1. Show that the following two subspaces of $\mathbb{C}^{1 \times 3}$ are equal:
 - $\text{Span}([1, 0, -1], [0, 2, 1], [1, 2, 0])$
 - $\{ [x, y, z] \in \mathbb{C}^{1 \times 3} \mid z = y/2 - x \}$.
 Determine their dimension.

2. Show that $\mathbb{C}^{1 \times 3}$ has the following direct sum decomposition:
 \[\mathbb{C}^{1 \times 3} = \text{Span}([1, 2, 3]) \oplus \{ [x, y, z] \in \mathbb{C}^{1 \times 3} \mid z = x - y \}. \]

3. Let $V := \mathbb{C}^{1 \times 3}$ and $W := \text{Span}([1, 1, 1])$. Find a complement of W in V, that is, a subspace U of V such that $V = W \oplus U$.

4. Let $L := \mathbb{R}^{1 \times 3}$ be the 3-dimensional real row space with the following product:
 \[([a, b, c], [x, y, z]) = [a, b, c] \times [x, y, z] := [bz - cy, cx - az, ay - bx]. \]
 Show that this product fulfills the Jacobi identity.

5. Let L be a Lie algebra over a field \mathbb{F} and H a subspace of L (not necessarily a subalgebra). Use the Jacobi identity to show that both the normaliser $N_L(H)$ and the centraliser $C_L(H)$ are Lie subalgebras of L.

6. Let $L = \mathbb{C}^{n \times n}$ with $n \geq 2$. Show that the subspace K of skew-symmetric matrices, i.e. $\{ A \in \mathbb{C}^{n \times n} \mid A^t = -A \}$ where A^t is the transposed matrix of A, is not an ideal.

7. Let L be any Lie algebra over a field \mathbb{F}. Show that the members of the lower central series
 \[L = L^0 \supseteq L^1 = [L, L] \supseteq L^2 \supseteq \cdots \]
 are in fact ideals in L.

8. Let L be any Lie algebra over a field \mathbb{F}. Show that the members of the derived series
 \[L = L^{(0)} \supseteq L^{(1)} = [L, L] \supseteq L^{(2)} \supseteq \cdots \]
 are in fact ideals in L.