1. Using any method you choose, find a primitive element of F_9. Demonstrate, by direct verification, that each of its conjugates with respect to F_3 is also a primitive element.

2. The set of automorphisms of \mathbb{C} over \mathbb{R} (i.e. the automorphisms of \mathbb{C} which fix \mathbb{R} pointwise) forms a group. Describe this group.
Hint: begin by considering the effect of such an automorphism on $i \in \mathbb{C}$.

3. Let $K = F_q$ and let F be a finite extension of K. Let $\alpha = \beta^q - \beta$ for some $\beta \in F$.
Prove that
$$\alpha = \gamma^q - \gamma \text{ with } \gamma \in F \iff \beta - \gamma \in K.$$

4. Let $K = F_q$ and let $F = F_q^m$ be a finite extension of K.
Prove that: for $\alpha \in F$,
$$N_{F/K}(\alpha) = 1 \iff \alpha = \beta^{q-1} \text{ for some } \beta \in F^*.$$

5. Prove that, if the order of basis elements is taken into account, then the number of different bases of F_q^m over F_q is
$$\left(q^m - 1\right)\left(q^m - q\right)\left(q^m - q^2\right) \cdots \left(q^m - q^{m-1}\right).$$