1. Fill in the details of the proof of Theorem 8.2(i) to show that $E^{(n)}$ is cyclic.

2. In the following, assume we are working in a field over which the cyclotomic polynomial Q_n is defined. Find $Q_n(x)$, in its simplest form, for
 (i) $n = 8$;
 (ii) $n = 20$.

3. Express F_8 using
 - root adjunction;
 - the fact that it is the 7th cyclotomic field over F_2.
 Draw up a table showing how the two representations correspond.

4. In this question, you are given the following theorem:
 As in Theorem 7.16, let $I(q, n; x)$ be the product of all monic irreducible polynomials in $F_q[x]$ of degree n. Then for $n > 1$ we have
 $$I(q, n; x) = \prod_m Q_m(x),$$
 where the product is extended over all positive divisors m of $q^n - 1$ for which n is the multiplicative order of q modulo m, and where $Q_m(x)$ is the mth cyclotomic polynomial over F_q.
 (i) Using the given theorem (or otherwise), calculate $I(3, 2; x)$.
 (ii) Use part (i) to determine all three monic irreducible polynomials in $F_3[x]$ of degree 2. (Hint: Theorems 8.8 and 8.12 of the notes will help you here).