1. (a) Define the characteristic of a ring R. \[2\]
(b) Prove that a ring $R \neq \{0\}$ of positive characteristic with an identity and no zero divisors must have prime characteristic. \[3\]
(c) Let F be a field. Define what it means for a polynomial $p \in F[x]$ to be irreducible over F. \[1\]
(d) Find all irreducible polynomials over \mathbb{F}_2 of degree 4. \[3\]
(e) State (giving justification) whether the following are fields:
 (i) $\mathbb{F}_2[x]/(x^4 + x + 1)$;
 (ii) $\mathbb{F}_5[x]/(x^4 + x + 1)$. \[3\]
(f) Calculate the multiplicative order of $x + (x^4 + x^3 + x^2 + x + 1)$ in the field $\mathbb{F}_2[x]/(x^4 + x^3 + x^2 + x + 1)$. \[3\]

2. (a) Define (i) a prime field; (ii) the prime subfield of a field F. \[2\]
(b) Prove that the prime subfield of a field F is a prime field. \[2\]
(c) Let \(F, K \) be fields. Let \(\alpha \in F \) be algebraic over \(K \) and let \(g \) be the minimal polynomial of \(\alpha \) over \(K \). Prove that \(K(\alpha) \) is isomorphic to \(K[x]/(g) \). [4]

(d) Consider the irreducible polynomials \(f(x) = x^2 + 1 \) and \(g(x) = x^2 - x - 1 \) in \(\mathbb{F}_3[x] \).

(i) Let \(L = \mathbb{F}_3[x]/(f) \). Show that \(L \) is the splitting field for \(f \) over \(\mathbb{F}_3 \).

(ii) Let \(\alpha \in L \) be a root of \(f \). By considering \(\alpha - 1 \) (or otherwise) show that \(L \) is also a splitting field for \(g \) over \(\mathbb{F}_3 \). [5]

(e) State in full (without proof) the theorem asserting the ‘Existence and Uniqueness of Finite Fields’. [2]

3. (a) Define a **primitive element** of a finite field \(\mathbb{F}_q \). [1]

(b) (i) How many primitive elements does \(\mathbb{F}_4 \) contain?

(ii) Expressing \(\mathbb{F}_4 \) as \(\mathbb{F}_2(\theta) \) for a suitable \(\theta \), list the primitive element(s) of \(\mathbb{F}_4 \). [2]

Let \(K \) be a field of characteristic \(p \), and \(n \in \mathbb{N} \) with \(p \nmid n \).

(c) Define the **\(n \)th cyclotomic field** \(K^{(n)} \) and a **\(n \)th root of unity** over \(K \). [2]

As usual, let

\[
Q_n(x) = \prod_{s=1 \atop (s,n)=1}^{n} (x - \zeta^s)
\]

where \(\zeta \) is a primitive \(n \)th root of unity over \(K \).

(d) Prove

(i) \(x^n - 1 = \prod_{d|n} Q_d(x) \);

(ii) \(Q_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)} \), where \(\mu \) is the Moebius function.

(You may assert, without proof, the Moebius Inversion Formula). [4]

(e) Using the fact that \(\mathbb{F}_8 \) is the 7th cyclotomic field over \(\mathbb{F}_2 \), find a primitive element of \(\mathbb{F}_8 \) and express \(\mathbb{F}_8 \) in terms of this primitive element. [4]

(f) If \(d|n \) with \(1 \leq d \leq n \), prove that \(Q_n(x) \) divides \(\frac{x^n - 1}{x^d - 1} \) whenever \(Q_n(x) \) is defined. [2]

4. (a) Prove that if \(F \) is a finite field containing a subfield \(K \) with \(q \) elements, then \(F \) has \(q^m \) elements where \(m = [F : K] \). [3]

(b) Define the **conjugates** of \(\alpha \in \mathbb{F}_{q^m} \) with respect to \(\mathbb{F}_q \). [1]
(c) Let \(\alpha \in \mathbb{F}_{16} \) be a root of \(f(x) = x^4 + x + 1 \in \mathbb{F}_2[x] \). Calculate the conjugates of \(\alpha \) with respect to (i) \(\mathbb{F}_2 \) (ii) \(\mathbb{F}_4 \). [3]

(d) Let \(F \) be a finite extension of a finite field \(K \), and \(\alpha \in F \). Define the trace \(\text{Tr}_{F/K}(\alpha) \) and the norm \(N_{F/K}(\alpha) \) of \(\alpha \) over \(K \). [2]

(e) Let \(F = \mathbb{F}_{q^m} \) be a finite extension of \(K = \mathbb{F}_q \).

(i) Suppose \(\text{Tr}_{F/K}(\alpha) = 0 \) for some \(\alpha \in F \), and let \(\beta \) be a root of \(x^q - x - \alpha \) in an extension field of \(F \). Prove that, in fact, \(\beta \in F \).

(ii) Hence prove that (for \(\alpha \in F \)) \(\text{Tr}_{F/K}(\alpha) = 0 \) if and only if \(\alpha = \beta^q - \beta \) for some \(\beta \in F \). [5]

(f) State the Primitive Normal Basis Theorem. [1]