1. Make in GAP a free group F on two generators a and b. Assign the generators to two variables a and b and produce a few words in F. See how inverses are cancelled automatically.
 Hint 1: Use `FreeGroup("a","b");`
 Hint 2: Use `GeneratorsOfGroup`.

2. Give the presentation
 \[G := \langle a, b \mid a^2, b^3, (ab)^{11}, [a, b]^6, (abab^{-1})^6 \rangle \]
 to GAP. Find the order of G.
 Hint 1: Type in the relations in a list R and use the F/R operation to form G.
 Hint 2: Simply try the `Size` command.

3. Compute an isomorphism to a permutation group.
 Hint: `?IsomorphismPermGroup` and `?Image`

4. Perform a coset enumeration of
 \[H := \langle a, b \mid a^2, b^3, abab \rangle \]
 on the cosets of the trivial group.
 Hint 1: `?TrivialSubgroup` and `?CosetTable`.

5. Perform a coset enumeration of H on the cosets of the group generated by a. Derive from this a group homomorphism into a symmetric group (without using `FactorCosetAction`).
 Hint 1: `?CosetTable` and `?PermList`.

6. Enter the group
 \[K := \langle s, t \mid s^3, t^2 \rangle \]
 into GAP and determine its size.
 Hint 1: Hit “Ctrl-C” on the keyboard to interrupt GAP.
 Hint 2: Compute the `?AbelianInvariants`.
 Hint 3: Use `?LowIndexSubgroupsFpGroup` and then `AbelianInvariants` for some of the subgroups.

7. Investigate the Fibonacci group
 \[F(5) := \langle a, b, c, d, e \mid ab = c, bc = d, cd = e, de = a, ea = b \rangle \]

8. Investigate the Fibonacci group
 \[F(6) := \langle a, b, c, d, e, f \mid ab = c, bc = d, cd = e, de = f, ef = a, fa = b \rangle \]

9. Use the following program to make an FP group:
   ```gap
   n:=10; f:=FreeGroup(10); g:=GeneratorsOfGroup(f); rels:=[ ];
   for i in [1..n] do Add(rels,g[i]^2); od;
   for i in [1..n-2] do for j in [i+2..n] do Add(rels,Comm(g[i],g[j])); od; od;
   for i in [1..n-1] do Add(rels,(g[i]*g[i+1])^3); od;
   G := f/rels;
   
   Determine the order of $G$.
   **Hint 1:** Try to enumerate the cosets of a subgroup of $G$.
   **Hint 2:** Once you have the group homomorphism, compute its `?Kernel`.```