Recognising Matrix Groups

Max Neunhöffer

Lehrstuhl D für Mathematik
RWTH Aachen

Tucson 2006
All of this is joint work with Ákos Seress.
All of this is joint work with Ákos Seress.

Lots of others contributed ideas, results, and code.
The Problem

\mathbb{F}_q field with q elements
The Problem

\mathbb{F}_q field with q elements

$\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(\mathbb{F}_q)$
The Problem

\mathbb{F}_q field with q elements

$\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(\mathbb{F}_q)$

$G := \langle M_1, M_2, \ldots, M_k \rangle$ finite
The Problem

\mathbb{F}_q field with q elements

$\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(\mathbb{F}_q)$

$G := \langle M_1, M_2, \ldots, M_k \rangle$ finite

Questions

- What is $|G|$?
Recognising Matrix Groups

Max Neunhöffer

The Problem

Constructive recognition
Straight line programs
Efficiency
Discrete logarithm problem
History

Some Solutions

What one can do
The composition tree
An example: Low index
Aschbacher classes
Leaves

State of implementation
GAP packages recog and recogmethods
Help is appreciated

\mathbb{F}_q field with q elements

$\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(\mathbb{F}_q)$

$G := \langle M_1, M_2, \ldots, M_k \rangle$ finite

Questions

- What is $|G|$?
- What can be said about the isomorphism type?
The Problem

\mathbb{F}_q field with q elements

$\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(\mathbb{F}_q)$

$G := \langle M_1, M_2, \ldots, M_k \rangle$ finite

Questions

- What is $|G|$?
- What can be said about the isomorphism type?
- Given $g \in G$, write g as product of the M_i
The Problem

\(F_q\) field with \(q\) elements
\[
\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(F_q)
\]
\(G := \langle M_1, M_2, \ldots, M_k \rangle\) finite

Questions

- What is \(|G|\)?
- What can be said about the isomorphism type?
- Given \(g \in G\), write \(g\) as product of the \(M_i\)
 (or in terms of some “nice” generating set of \(G\)).
The Problem

\mathbb{F}_q field with q elements

$\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(\mathbb{F}_q)$

$G := \langle M_1, M_2, \ldots, M_k \rangle$ finite

Questions

- What is $|G|$?
- What can be said about the isomorphism type?
- Given $g \in G$, write g as product of the M_i
 (or in terms of some “nice” generating set of G).
- Do all this “efficiently”.

State of implementation

GAP packages recog and recogmethods
Help is appreciated
The Problem

\mathbb{F}_q field with q elements

$\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(\mathbb{F}_q)$

$G := \langle M_1, M_2, \ldots, M_k \rangle$ finite

Questions

- What is $|G|$?
- What can be said about the isomorphism type?
- Given $g \in G$, write g as product of the M_i (or in terms of some “nice” generating set of G).
- Do all this “efficiently”.

We call this “constructive recognition of G”.
The Problem

\mathbb{F}_q field with q elements

$\{M_1, M_2, \ldots, M_k\} \subseteq \text{GL}_d(\mathbb{F}_q)$

$G := \langle M_1, M_2, \ldots, M_k \rangle$ finite

Questions

- What is $|G|$?
- What can be said about the isomorphism type?
- Given $g \in G$, write g as product of the M_i (or in terms of some “nice” generating set of G).
- Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: $\{\bar{M}_1, \ldots, \bar{M}_k\} \subseteq \text{PGL}_d(\mathbb{F}_q)$, $G := \langle \bar{M}_1, \ldots, \bar{M}_k \rangle$
Recognising Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition
Straight line programs
Efficiency
Discrete logarithm problem
History

Some Solutions
What one can do
The composition tree
An example: Low index
Aschbacher classes
Leaves

State of implementation
GAP packages recog and recogmethods
Help is appreciated

Straight line programs

Example:

```
# input:
r := [ a, b, c ];
# program:
# return values:
[ r[4], r[5]^5 ]
```

Straight line programs (SLPs) only reference earlier results, do not contain loops, branches or subroutines, and can express long products memory efficiently.
Recognising Matrix Groups
Max Neunhöffer

The Problem
Constructive recognition
Straight line programs
Efficiency
Discrete logarithm problem
History

Some Solutions
What one can do
The composition tree
An example: Low index
Aschbacher classes
Leaves

State of implementation
GAP packages recog and recogmethods
Help is appreciated

Straight line programs

Example:

```plaintext
# input:
r := [ a, b, c ];
# program:
# return values:
[ r[4], r[5]^5 ]
```

Executed with input \((a, b, c)\) this returns:
Straight line programs

Example:

```plaintext
# input:
r := [ a, b, c ];
# program:
# return values:
[ r[4], r[5]^5 ]
```

Executed with input \((a, b, c)\) this returns:

\((a^2ba^{-2}, a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7)\)
Recognising Matrix Groups
Max Neunhöffer

The Problem
Constructive recognition
Straight line programs
Efficiency
Discrete logarithm problem
History

Some Solutions
What one can do
The composition tree
An example: Low index
Aschbacher classes
Leaves

State of implementation
GAP packages recog and recogmethods
Help is appreciated

Straight line programs

Example:

```plaintext
# input:
\r := [ a, b, c ];
# program:
# return values:
[ \r[4], \r[5]^5 ]
```

Executed with input \((a, b, c)\) this returns:

\((a^2ba^{-2}, a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7)\)

Straight line programs (SLPs)

- only reference earlier results,
Straight line programs

Example:

```plaintext
# input:
r := [ a, b, c ];
# program:
# return values:
[ r[4], r[5]^5 ]
```

Executed with input \((a, b, c)\) this returns:

\((a^2ba^{-2}, a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7)\)

Straight line programs (SLPs)

- only reference earlier results,
- do not contain loops, branches or subroutines, and
Straight line programs

Example:

```plaintext
# input:
r := [ a, b, c ];
# program:
# return values:
[ r[4], r[5]^5 ]
```

Executed with input \((a, b, c)\) this returns:

\((a^2ba^{-2}, a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7 a^2ba^{-2}c^7)\)

Straight line programs (SLPs)

- only reference earlier results,
- do not contain loops, branches or subroutines, and
- can express long products memory efficiently.
Efficiency

What does “efficiently” mean?

The maximal number of operations necessary is bounded by a (fixed) polynomial in the "input size". The input size is measured by d: size of matrices, k: number of matrices, and $\log(q)$: size of a field element. This is called "in polynomial time". Also the length of the resulting straight line programs should be decent.
Efficiency

What does “efficiently” mean?

The maximal number of operations necessary is bounded by a (fixed) polynomial in the “input size”.

The maximal number of operations necessary is bounded by a (fixed) polynomial in the “input size”.
Efficiency

What does “efficiently” mean?

The maximal number of operations necessary is bounded by a (fixed) polynomial in the “input size”.

The input size is measured by

- d: size of matrices,
- k: number of matrices, and
- $\log(q)$: size of a field element.
Efficiency

What does "efficiently" mean?

The maximal number of operations necessary is bounded by a (fixed) polynomial in the "input size".

The input size is measured by

- \(d\): size of matrices,
- \(k\): number of matrices, and
- \(\log(q)\): size of a field element.

This is called "in polynomial time".
Efficiency

What does “efficiently” mean?

The maximal number of operations necessary is bounded by a (fixed) polynomial in the “**input size**”.

The **input size** is measured by

- d: size of matrices,
- k: number of matrices, and
- $\log(q)$: size of a field element.

This is called “**in polynomial time**”.

Also the **length** of the resulting straight line programs should be decent.

\implies we use a “**nice**” generating set
Efficiency

What does “efficiently” mean?

The maximal number of operations necessary is bounded by a (fixed) polynomial in the “input size”.

The input size is measured by

- \(d \): size of matrices,
- \(k \): number of matrices, and
- \(\log(q) \): size of a field element.

This is called “in polynomial time”.

Also the length of the resulting straight line programs should be decent.

\[\implies\] we use a “nice” generating set

\[\implies\] this decision shortened SLPs from 500,000 steps down to 500 in examples
Nasty special case

Is there hope?
Nasty special case

Is there hope?

q large, $d = k = 1$, $M_1 = [\zeta]$ with ζ a primitive root of \mathbb{F}_q
Nasty special case

Is there hope?

q large, $d = k = 1$, $M_1 = [\zeta]$ with ζ a primitive root of \mathbb{F}_q

Then our task is the **Discrete Logarithm Problem**
Nasty special case

Is there hope?

q large, $d = k = 1$, $M_1 = [\zeta]$ with ζ a primitive root of \mathbb{F}_q

Then our task is the Discrete Logarithm Problem

to which there is currently

NO SOLUTION KNOWN in polynomial time in $\log(q)$
Nasty special case

Is there hope?

q large, $d = k = 1$, $M_1 = [\zeta]$ with ζ a primitive root of \mathbb{F}_q

Then our task is the Discrete Logarithm Problem to which there is currently NO SOLUTION KNOWN in polynomial time in $\log(q)$

\implies We work “modulo” this problem.
History

The **Matrix Group Recognition Project**:

- 1988, Oberwolfach, Joachim Neubüser:
 How to decide, whether $G = \text{GL}_d(q)$?

State of implementation
- GAP packages recog and recogmethods
- Help is appreciated
History

The Matrix Group Recognition Project:

- 1988, Oberwolfach, Joachim Neubüser: How to decide, whether $G = \text{GL}_d(q)$?
- 1992, Peter Neumann, Cheryl Praeger: Algorithm to decide whether $\text{SL}_d(q) \leq G$.

History

The Matrix Group Recognition Project:

- 1988, Oberwolfach, Joachim Neubüser: How to decide, whether $G = \text{GL}_d(q)$?
- 1992, Peter Neumann, Cheryl Praeger: Algorithm to decide whether $\text{SL}_d(q) \leq G$.
History

The Matrix Group Recognition Project:

- 1988, Oberwolfach, Joachim Neubüser: How to decide, whether $G = \text{GL}_d(q)$?
- 1992, Peter Neumann, Cheryl Praeger: Algorithm to decide whether $SL_d(q) \leq G$.
History

The Matrix Group Recognition Project:

- 1988, Oberwolfach, Joachim Neubüser: How to decide, whether $G = \text{GL}_d(q)$?
- 1992, Peter Neumann, Cheryl Praeger: Algorithm to decide whether $\text{SL}_d(q) \leq G$.
- Eamonn O’Brien: Implementation in Magma

Help is appreciated
History

The Matrix Group Recognition Project:

- 1988, Oberwolfach, Joachim Neubüser: How to decide, whether \(G = \text{GL}_d(q) \)?
- 1992, Peter Neumann, Cheryl Praeger: Algorithm to decide whether \(\text{SL}_d(q) \leq G \).
- Eamonn O’Brien: Implementation in Magma
- Lots of other people . . .
History

The Matrix Group Recognition Project:

- 1988, Oberwolfach, Joachim Neubüser: How to decide, whether $G = \text{GL}_d(q)$?
- 1992, Peter Neumann, Cheryl Praeger: Algorithm to decide whether $\text{SL}_d(q) \leq G$.
- Eamonn O’Brien: Implementation in Magma
- Lots of other people . . .

Our Goals:

- A new implementation in GAP
History

The Matrix Group Recognition Project:

- 1988, Oberwolfach, Joachim Neubüser: How to decide, whether $G = \text{GL}_d(q)$?
- 1992, Peter Neumann, Cheryl Praeger: Algorithm to decide whether $\text{SL}_d(q) \leq G$.
- Eamonn O’Brien: Implementation in Magma
- Lots of other people …

Our Goals:

- A new implementation in GAP
- Go for completely analysed polynomial-time algorithms
History

The Matrix Group Recognition Project:

- 1988, Oberwolfach, Joachim Neubüser: How to decide, whether $G = \text{GL}_d(q)$?
- 1992, Peter Neumann, Cheryl Praeger: Algorithm to decide whether $\text{SL}_d(q) \leq G$.
- Eamonn O’Brien: Implementation in Magma
- Lots of other people . . .

Our Goals:

- A new implementation in GAP
- Go for completely analysed polynomial-time algorithms
- Improve algorithms
What one can do with matrices

With a matrix group $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ we can

- multiply, invert, compare, power up matrices
What one can do with matrices

With a matrix group \(G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q) \) we can

- multiply, invert, compare, power up matrices
- execute straight line programs on matrices
What one can do with matrices

With a matrix group \(G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q) \) we can

- multiply, invert, compare, power up matrices
- execute straight line programs on matrices
- determine the order of a matrix \(M \),
 i.e. \(\min\{n \in \mathbb{N} \mid M^n = 1\} \)
What one can do with matrices

With a matrix group $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ we can

- multiply, invert, compare, power up matrices
- execute straight line programs on matrices
- determine the order of a matrix M, i.e. $\min\{n \in \mathbb{N} \mid M^n = 1\}$
- determine the projective order of a matrix M, i.e. $\min\{n \in \mathbb{N} \mid M^n \in F \cdot 1_d\}$ (scalar matrices)
What one can do with matrices

With a matrix group $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ we can

- multiply, invert, compare, power up matrices
- execute straight line programs on matrices
- determine the order of a matrix M,
 i.e. $\min \{ n \in \mathbb{N} \mid M^n = 1 \}$
- determine the projective order of a matrix M,
 i.e. $\min \{ n \in \mathbb{N} \mid M^n \in \mathbb{F} \cdot 1_d \}$ (scalar matrices)
- find invariant subspaces $0 < W < \mathbb{F}^{1 \times d}$ with $Wg \subseteq W$ for all $g \in G$ or prove irreducibility: “MEATAXE”
What one can do with matrices

With a matrix group $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ we can

- multiply, invert, compare, power up matrices
- execute straight line programs on matrices
- determine the order of a matrix M, i.e. $\min\{ n \in \mathbb{N} \mid M^n = 1 \}$
- determine the projective order of a matrix M, i.e. $\min\{ n \in \mathbb{N} \mid M^n \in \mathbb{F} \cdot \mathbf{1}_d \}$ (scalar matrices)
- find invariant subspaces $0 < W < \mathbb{F}^{1 \times d}$ with $Wg \subseteq W$ for all $g \in G$ or prove irreducibility: “\text{MEATAXE}”
- create (pseudo-) random elements
What one can do with matrices

With a matrix group $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ we can

- multiply, invert, compare, power up matrices
- execute straight line programs on matrices
- determine the order of a matrix M, i.e. $\min \{ n \in \mathbb{N} | M^n = 1 \}$
- determine the projective order of a matrix M, i.e. $\min \{ n \in \mathbb{N} | M^n \in F \cdot 1_d \}$ (scalar matrices)
- find invariant subspaces $0 < W < F^{1 \times d}$ with $Wg \subseteq W$ for all $g \in G$ or prove irreducibility: “MEATAXE”
- create (pseudo-) random elements
- act with matrices on vectors or on subspaces
 \rightarrow gives homomorphisms to permutation groups
Homomorphisms

Try reduction: For \(G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q) \) find a homomorphism \(\varphi : G \rightarrow H \) which is

- explicitly computable
Homomorphisms

Try reduction: For $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ find a homomorphism $\varphi : G \rightarrow H$ which is

- explicitly computable
- onto some group $H = \langle \varphi(M_1), \ldots, \varphi(M_k) \rangle$ which is “easier to handle”
Homomorphisms

Try reduction: For $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ find a homomorphism $\varphi : G \rightarrow H$ which is

- explicitly computable
- onto some group $H = \langle \varphi(M_1), \ldots, \varphi(M_k) \rangle$ which is “easier to handle”

Assume we can constructively recognise H.

Set $N := \ker(\varphi)$. Then:
Homomorphisms

Try reduction: For \(G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q) \), find a homomorphism \(\varphi : G \to H \) which is

- explicitly computable
- onto some group \(H = \langle \varphi(M_1), \ldots, \varphi(M_k) \rangle \) which is “easier to handle”

Assume we can constructively recognise \(H \).

Set \(N := \ker(\varphi) \). Then:

- create a (pseudo-) random element \(g \) in \(G \)
Homomorphisms

Try reduction: For $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ find a homomorphism $\varphi : G \to H$ which is

- explicitly computable
- onto some group $H = \langle \varphi(M_1), \ldots, \varphi(M_k) \rangle$ which is “easier to handle”

Assume we can constructively recognise H.

Set $N := \ker(\varphi)$. Then:

- create a (pseudo-) random element g in G
- map g to H via φ
Homomorphisms

Try reduction: For $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ find a homomorphism $\varphi : G \rightarrow H$ which is

- explicitly computable
- onto some group $H = \langle \varphi(M_1), \ldots, \varphi(M_k) \rangle$ which is “easier to handle”

Assume we can constructively recognise H.

Set $N := \ker(\varphi)$. Then:

- create a (pseudo-) random element g in G
- map g to H via φ
- express $\varphi(g)$ as an SLP S in $\varphi(M_1), \ldots, \varphi(M_k)$
Homomorphisms

Try reduction: For $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$ find a homomorphism $\varphi : G \rightarrow H$ which is

- explicitly computable
- onto some group $H = \langle \varphi(M_1), \ldots, \varphi(M_k) \rangle$ which is “easier to handle”

Assume we can constructively recognise H.

Set $N := \ker(\varphi)$. Then:

- create a (pseudo-) random element g in G
- map g to H via φ
- express $\varphi(g)$ as an SLP S in $\varphi(M_1), \ldots, \varphi(M_k)$
- execute S on M_1, \ldots, M_k, get $g' \in G$ s.t. $\varphi(g) = \varphi(g')$
Homomorphisms

Try reduction: For $G = \langle M_1, \ldots, M_k \rangle \leq \text{GL}_d(q)$
find a homomorphism $\varphi : G \rightarrow H$ which is

- explicitly computable
- onto some group $H = \langle \varphi(M_1), \ldots, \varphi(M_k) \rangle$ which is “easier to handle”

Assume we can constructively recognise H.

Set $N \coloneqq \ker(\varphi)$. Then:

- create a (pseudo-) random element g in G
- map g to H via φ
- express $\varphi(g)$ as an SLP S in $\varphi(M_1), \ldots, \varphi(M_k)$
- execute S on M_1, \ldots, M_k, get $g' \in G$ s.t. $\varphi(g) = \varphi(g')$
- $\Rightarrow g^{-1} \cdot g' \in N$
- this creates a (pseudo-) random element in N
Composition trees

Produce generators of $N := \ker(\varphi)$ and recognise.
Composition trees

Produce generators of $N := \ker(\varphi)$ and recognise.
Assume that we have recognised H and N constructively.
Composition trees

Produce generators of $N := \ker(\varphi)$ and recognise.
Assume that we have recognised H and N constructively.

What does this help for G?
Composition trees

Produce generators of \(N : = \ker(\varphi) \) and recognise.

Assume that we have recognised \(H \) and \(N \) constructively.

What does this help for \(G \)?

\[
|G| = |H| \cdot |N|
\]
Composition trees

Produce generators of $N := \ker(\varphi)$ and recognise.
Assume that we have recognised H and N constructively.

What does this help for G?

- $|G| = |H| \cdot |N|$
- G has a subgroup N and a factor group H
Composition trees

Produce generators of $N := \ker(\varphi)$ and recognise.
Assume that we have recognised H and N constructively.

What does this help for G?

- $|G| = |H| \cdot |N|$
- G has a subgroup N and a factor group H
- We have recognised G constructively!
Get the recursion going ...

Choose as “nice generators” M'_1, \ldots, M'_k for G:

- preimages under φ of the nice generators of H plus
- the nice generators of N
Choose as “nice generators” M'_1, \ldots, M'_k for G:

- preimages under φ of the nice generators of H plus
- the nice generators of N

Given $g \in G$, find an SLP S expressing g in the M'_i:

- map g via φ to $\varphi(g) \in H$
Choose as “nice generators” M'_1, \ldots, M'_k for G:
- preimages under φ of the nice generators of H plus
- the nice generators of N

Given $g \in G$, find an SLP S expressing g in the M'_i:
- map g via φ to $\varphi(g) \in H$
- express $\varphi(g)$ as SLP S' in the nice gens of H
Get the recursion going . . .

Choose as “nice generators” M'_1, \ldots, M'_k for G:
- preimages under φ of the nice generators of H plus
- the nice generators of N

Given $g \in G$, find an SLP S expressing g in the M'_i:
- map g via φ to $\varphi(g) \in H$
- express $\varphi(g)$ as SLP S' in the nice gens of H
- execute S' on the preimages, get g'
Get the recursion going . . .

Choose as “nice generators” M'_1, \ldots, M'_k for G:
- preimages under φ of the nice generators of H plus
- the nice generators of N

Given $g \in G$, find an SLP S expressing g in the M'_i:
- map g via φ to $\varphi(g) \in H$
- express $\varphi(g)$ as SLP S' in the nice gens of H
- execute S' on the preimages, get g'
- express $g'^{-1} \cdot g \in N$ as SLP S'' in N
Get the recursion going . . .

Choose as “nice generators” M'_1, \ldots, M'_k for G:
- preimages under φ of the nice generators of H plus
- the nice generators of N

Given $g \in G$, find an SLP S expressing g in the M'_i:
- map g via φ to $\varphi(g) \in H$
- express $\varphi(g)$ as SLP S' in the nice gens of H
- execute S' on the preimages, get g'
- express $g'^{-1} \cdot g \in N$ as SLP S'' in N
- put together S from S' and S'' plus one multiplication
A Composition Tree

G

N H

N H N H

N H

N H

1 1 2 2

3 3

G

N H

N H N H

N H

N H

1 1 2 2

3 3

N1 H1 N2 H2

N3 H3

Upward arrows: monomorphisms
Downward arrows: epimorphisms
Low index

Assume:

- G has a maximal subgroup K of low index
- G acts irreducibly
- K leaves a subspace $0 < W < \mathbb{F}_q^{1 \times d}$ invariant
Low index

Assume:

- G has a maximal subgroup K of low index
- G acts irreducibly
- K leaves a subspace $0 < W < \mathbb{F}_q^{1 \times d}$ invariant

Try to find a homomorphism in the following way:

- create random elements, hope they generate K
Low index

Assume:
- G has a maximal subgroup K of low index
- G acts irreducibly
- K leaves a subspace $0 < W < \mathbb{F}_q^{1 \times d}$ invariant

Try to find a homomorphism in the following way:
- create random elements, hope they generate K
- find an invariant subspace for these elements
Low index

Assume:
- G has a maximal subgroup K of low index
- G acts irreducibly
- K leaves a subspace $0 < W < \mathbb{F}_q^{1 \times d}$ invariant

Try to find a homomorphism in the following way:
- create random elements, hope they generate K
- find an invariant subspace for these elements
- calculate its orbit under the action of G
Low index

Assume:
- G has a maximal subgroup K of low index
- G acts irreducibly
- K leaves a subspace $0 < W < \mathbb{F}_q^{1 \times d}$ invariant

Try to find a homomorphism in the following way:
- **create** random elements, hope they generate K
- **find** an invariant subspace for these elements
- **calculate** its orbit under the action of G
- **find** a homomorphism onto a permutation group H
Low index

Assume:
- G has a maximal subgroup K of low index
- G acts irreducibly
- K leaves a subspace $0 < W < \mathbb{F}_q^{1 \times d}$ invariant

Try to find a homomorphism in the following way:
- create random elements, hope they generate K
- find an invariant subspace for these elements
- calculate its orbit under the action of G
- find a homomorphism onto a permutation group H

This works amazingly well!
Low index

Assume:
- G has a maximal subgroup K of low index
- G acts irreducibly
- K leaves a subspace $0 < W < \mathbb{F}_q^{1 \times d}$ invariant

Try to find a homomorphism in the following way:
- create random elements, hope they generate K
- find an invariant subspace for these elements
- calculate its orbit under the action of G
- find a homomorphism onto a permutation group H

This works amazingly well!

Unfortunately, it is not yet analysed to be polynomial-time!
Aschbacher’s Theorem

Aschbacher classified the maximal subgroups of $GL_d(q)$.

Aschbacher’s Theorem

Aschbacher classified the maximal subgroups of $GL_d(q)$.

The Problem

Constructive recognition
Straight line programs
Efficiency
Discrete logarithm problem
History

Some Solutions

What one can do
The composition tree
An example: Low index
Aschbacher classes
Leaves

State of implementation

GAP packages recog and recogmethods
Help is appreciated
Aschbacher’s Theorem

Aschbacher classified the maximal subgroups of $\text{GL}_d(q)$.

Theorem (Aschbacher, 1984)

If $G < \text{GL}_d(q)$ then it falls under at least one of:

- **C1** G leaves invariant a subspace $0 < W < \mathbb{F}_q^{1 \times d}$
- **C2** G preserves a decomposition $\mathbb{F}_q^{1 \times d} \cong V_1 \oplus \cdots \oplus V_j$
- **C3** G comes from a bigger field (semilinear)
- **C4** G preserves a decomposition $\mathbb{F}_q^{1 \times d} \cong V_1 \otimes V_2$
- **C5** G is realizable over a subfield
- **C6** $G \leq N_{\text{GL}}(r^{1+2k})$ where r^{1+2k} is an extraspecial group
- **C7** G is tensor-induced
- **C8** G contains a “classical group” like $\text{SL}_d(q)$ or $\text{Sp}_d(q)$
- **C9** G is a quasi-simple group
Aschbacher’s Theorem

Aschbacher classified the maximal subgroups of $GL_d(q)$.

Theorem (Aschbacher, 1984)

If $G < GL_d(q)$ then it falls under at least one of:

- **C1** G leaves invariant a subspace $0 < W < F_q^{1 \times d}$
- **C2** G preserves a decomposition $F_q^{1 \times d} \cong V_1 \oplus \cdots \oplus V_j$
- **C3** G comes from a bigger field (semilinear)
- **C4** G preserves a decomposition $F_q^{1 \times d} \cong V_1 \otimes V_2$
- **C5** G is realizable over a subfield
- **C6** $G \leq N_{GL}(r^{1+2k})$ where r^{1+2k} is an extraspecial group
- **C7** G is tensor-induced
- **C8** G contains a “classical group” like $SL_d(q)$ or $Sp_d(q)$
- **C9** G is a quasi-simple group

All classes C1 to C7 are defined “geometrically” and promise some kind of homomorphism or “simplification”.

Aschbacher’s Theorem

Aschbacher classified the maximal subgroups of $GL_d(q)$.
Problem children

The leaves are a problem: Need representation theory.
Problem children

The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.
Problem children

The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.
Problem children

The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to

- **recognise** the “defining characteristic” of the group
Problem children

The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to

- recognise the “defining characteristic” of the group
- recognise the group for example by looking at distribution of element orders of random elements ("non-constructive recognition")
Problem children

The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to

- **recognise** the “defining characteristic” of the group
- **recognise** the group for example by looking at distribution of element orders of random elements (“non-constructive recognition”)
- use collected data about representations or
- use collected data about subgroups
Problem children

The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to

- recognise the “defining characteristic” of the group
- recognise the group for example by looking at distribution of element orders of random elements (“non-constructive recognition”)
- use collected data about representations or
- use collected data about subgroups
- directly recognise the group constructively:
 - use base and strong generating sets (matrix Schreier-Sims)
 - use tricks involving involution centralisers
The GAP package recog

GAP already provides:

- the infrastructure for SLPs, matrix handling, etc.
The GAP package recog

GAP already provides:

- the infrastructure for SLPs, matrix handling, etc.
- background algorithms for orbits, MEATAXE, etc.
Recognising Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition
Straight line programs
Efficiency
Discrete logarithm problem
History

Some Solutions
What one can do
The composition tree
An example: Low index
Aschbacher classes
Leaves

State of implementation
GAP packages recog and recogmethods
Help is appreciated

The GAP package recog

GAP already provides:
- the infrastructure for SLPs, matrix handling, etc.
- background algorithms for orbits, MEATAXE, etc.

The recog package provides:
- a completely working framework for composition trees with complete documentation
The GAP package recog

GAP already provides:
- the infrastructure for SLPs, matrix handling, etc.
- background algorithms for orbits, MEATAXE, etc.

The recog package provides:
- a completely working framework for composition trees with complete documentation
- a framework to administrate methods to find homomorphisms or leaves
The GAP package recog

GAP already provides:
- the infrastructure for **SLPs**, **matrix handling**, etc.
- background algorithms for **orbits**, **MEATAXE**, etc.

The **recog** package provides:
- a completely working **framework** for composition trees with complete **documentation**
- a framework to administrate methods to find homomorphisms or leaves
- handling of **permutation groups**, **matrix groups** and **projective groups** in our framework
The GAP package recog

GAP already provides:
- the infrastructure for **SLPs**, **matrix handling**, etc.
- background algorithms for **orbits**, **MEATAXE**, etc.

The **recog** package provides:
- a completely working **framework** for composition trees with complete **documentation**
- a framework to administrate methods to find homomorphisms or leaves
- handling of **permutation groups**, **matrix groups** and **projective groups** in our framework
- **switching** between different types of groups during recognition
The GAP package recog

GAP already provides:
- the infrastructure for **SLPs, matrix handling**, etc.
- background algorithms for **orbits, MEATAXE**, etc.

The recog package provides:
- a completely working **framework** for composition trees with complete **documentation**
- a framework to administrate methods to find homomorphisms or leaves
- handling of **permutation groups, matrix groups** and **projective groups** in our framework
- **switching** between different types of groups during recognition

Authors: MN and Ákos Seress
The GAP package recogmethods

The recogmethods package provides:

- asymptotically best algorithms for permutation groups
The GAP package recogmethods

The **recogmethods** package provides:
- asymptotically best algorithms for **permutation groups**
- methods to find homomorphism for all C1 to C7
The GAP package recogmethods

The **recogmethods** package provides:

- asymptotically best algorithms for permutation groups
- methods to find homomorphism for all C1 to C7
- non-constructive recognition of classical groups (C8)
The GAP package recogmethods

The recogmethods package provides:

- asymptotically best algorithms for permutation groups
- methods to find homomorphism for all C1 to C7
- non-constructive recognition of classical groups (C8)
- non-constructive recognition of the defining characteristic of simple groups by the two largest element orders (C9)
The GAP package recogmethods

The **recogmethods** package provides:

- asymptotically best algorithms for **permutation groups**
- methods to find homomorphism for all **C1 to C7**
- non-constructive recognition of **classical groups** (C8)
- non-constructive recognition of the **defining characteristic of simple groups** by the two largest element orders (C9)
- nearly ready non-constructive recognition of **simple groups** by further element order statistics (C9)
The GAP package recogmethods

The recogmethods package provides:

- asymptotically best algorithms for permutation groups
- methods to find homomorphism for all C1 to C7
- non-constructive recognition of classical groups (C8)
- non-constructive recognition of the defining characteristic of simple groups by the two largest element orders (C9)
- nearly ready non-constructive recognition of simple groups by further element order statistics (C9)
- a start of a database of hints for recognised leaves
The GAP package recogmethods

The recogmethods package provides:

- asymptotically best algorithms for permutation groups
- methods to find homomorphism for all C1 to C7
- non-constructive recognition of classical groups (C8)
- non-constructive recognition of the defining characteristic of simple groups by the two largest element orders (C9)
- nearly ready non-constructive recognition of simple groups by further element order statistics (C9)
- a start of a database of hints for recognised leaves

Authors: (currently)
Peter Brooksbank, Maska Law, Steve Linton, MN, Alice Niemeyer, Eamonn O’Brien, Ákos Seress.
Still missing

• analysis of the low index procedure
Still missing

- analysis of the low index procedure
- some cases in C4 and C7
Still missing

- analysis of the low index procedure
- some cases in C4 and C7
- constructive recognition after recognising a classical group
 (Charles Leedham-Green and Eamonn O’Brien)
Still missing

- analysis of the low index procedure
- some cases in C4 and C7
- constructive recognition after recognising a classical group
 (Charles Leedham-Green and Eamonn O’Brien)
- more hints in the database of hints for recognised leaves
Still missing

- analysis of the low index procedure
- some cases in C4 and C7
- constructive recognition after recognising a classical group
 (Charles Leedham-Green and Eamonn O’Brien)
- more hints in the database of hints for recognised leaves
- verification procedures (presentations)
Still missing

- analysis of the low index procedure
- some cases in C4 and C7
- constructive recognition after recognising a classical group
 (Charles Leedham-Green and Eamonn O’Brien)
- more hints in the database of hints for recognised leaves
- verification procedures (presentations)
- better methods, maybe “orthogonal” to the Aschbacher classification

State of implementation
GAP packages recog and recogmethods
Help is appreciated
Still missing

- analysis of the low index procedure
- some cases in C4 and C7
- constructive recognition after recognising a classical group
 (Charles Leedham-Green and Eamonn O’Brien)
- more hints in the database of hints for recognised leaves
- verification procedures (presentations)
- better methods, maybe “orthogonal” to the Aschbacher classification
- a whole lot of documentation
Still missing

- analysis of the low index procedure
- some cases in C4 and C7
- constructive recognition after recognising a classical group
 (Charles Leedham-Green and Eamonn O’Brien)
- more hints in the database of hints for recognised leaves
- verification procedures (presentations)
- better methods, maybe “orthogonal” to the Aschbacher classification
- a whole lot of documentation
- higher level algorithms after recognition (Sylow subgroups, maximal subgroups, centralisers, normalisers, etc.)
Help is appreciated

Everybody is welcome to contribute.

We need ideas, code, and analysis.