Enumerating orbits of Co_1 on $\mathbb{P}(F_{24}^5)$

The Problem
The Question
The Action
The Size

Enumerating large Orbits
Standard orbit enumeration
Using one helper subgroup
Orbit by suborbits
Using two helper subgroups
Halves of orbits

The Solution
Finding homomorphisms
Finding (small) orbits
Finding all orbits
Verification of Disjointness
The Result
Memory and Runtime Data

Lehrstuhl D für Mathematik
RWTH Aachen

Perth 2006
Enumerating orbits of Co_1 on $\mathbb{P}(\mathbb{F}_5^{24})$

The Problem
The Question
The Action
The Size

Enumerating large Orbits
Standard orbit enumeration
Using one helper subgroup
Orbit by suborbits
Using two helper subgroups
Halves of orbits

The Solution
Finding homomorphisms
Finding (small) orbits
Finding all orbits
Verification of Disjointness
The Result
Memory and Runtime Data

All of this is joint work with:

- Robert A. Wilson
- Felix Noeske
- Jürgen Müller
- Frank Lübeck
- Christoph Köhler
Long orbits

Gunter Malle classified long orbits of quasi-simple groups:

Definition (Long orbit)

G: quasi-simple group, $\rho : G \rightarrow \text{End}_{\mathbb{F}_q}(\mathbb{F}_q^d)$, induces an action on the projective space $\mathbb{P}(\mathbb{F}_q^d)$

An orbit is called long if it has at least $\frac{q^{d-1} - 1}{q-1}$ elements.

Recently he posed the following question:

Question

Does $2\cdot\text{Co}_1$ have a long orbit in its action on \mathbb{F}_5^{24}?
The Action

\[2.\text{Co}_1 = \text{Aut}(\Lambda) \text{ where } \Lambda \text{ is the Leech lattice:} \]
\[\text{the unique 24-dimensional, even, unimodular lattice with no vectors of norm 2.} \]
\[\text{Co}_1 : \text{one of the 26 sporadic simple groups.} \]

\[\implies 24\text{-dimensional integral representation of } 2.\text{Co}_1 \]

We consider this representation mod 5.

\[\implies \text{Download two matrices in } \mathbb{F}_5^{24 \times 24} \text{ from Rob’s page.} \]
The Size

\[|\text{Co}_1| = 4\,157\,776\,806\,543\,360\,000 \approx 4 \cdot 10^{18} \]

\[|\mathbb{P}(\mathbb{F}_5^{24})| = \frac{5^{24} - 1}{5 - 1} = 14\,901\,161\,193\,847\,656 \approx 15 \cdot 10^{15} \]

Is there an orbit of length at least

\[\frac{5^{23} - 1}{5 - 1} = 2\,980\,232\,238\,769\,531 \approx 3 \cdot 10^{15} \]

Storing a field element in 4 Bits, we would need at least

\[1\,387\,778 \text{ Gigabytes} \approx 1.4 \text{ Petabytes} \]

of memory to simply store all elements of such an orbit.
Standard orbit enumeration

Algorithm (Orbit enumeration)

Input: $G = \langle g_1, \ldots, g_r \rangle$ acting on $X, x \in X$

set $l := [x]$

for z in l:
 for g in $[g_1, \ldots, g_r]$:
 if zg in l:
 compute stabiliser element
 else:
 append zg to l

Output: l and generators for $\text{Stab}_G(x)$

We need to

- store all points in memory,
- look up points efficiently, and
- compute xG and $\text{Stab}_G(x)$ without knowing $|G|$.
Enumerating orbits of Co_1 on $\mathbb{P}(F_2^{24})$

The Problem

The Question

The Action

The Size

Enumerating large Orbits

Standard orbit enumeration
Using one helper subgroup
Orbit by suborbits
Using two helper subgroups
Halves of orbits

The Solution

Finding homomorphisms
Finding (small) orbits
Finding all orbits
Verification of Disjointness
The Result

Memory and Runtime Data

Storing U-suborbits

$U < G$ a helper subgroup \rightarrow archive U-suborbits!

We want:

- given $x \in X$, store xU and compute $|xU|$
- given $z \in X$, decide whether z lies in a stored xU

To this end, let $\bar{\cdot} : X \rightarrow Y$ be a homomorphism of U-sets:

- enumerate Y completely
- choose one element in each U-orbit of Y arbitrarily
- call these U-minimal
- for $y \in Y$, store a $u_y \in U$ such that yu_y is U-minimal
- for U-minimal $y \in Y$, store generators of $\text{Stab}_U(y)$
- call $x \in X$ U-minimal, if $\bar{x} \in Y$ is U-minimal

Algorithm

Store xU by storing all U-minimal elements in xU.
Storing U-suborbits II

If $x \in X$ is U-minimal (i.e. $\bar{x} \in Y$ is U-minimal), then $x\text{Stab}_U(\bar{x})$ is the set of U-minimal elements in xU.

Algorithm (Storing xU)

\begin{itemize}
 \item \textbf{Input:} $x \in X$
 \item look up $u_{\bar{x}}$ and compute $z := xu_{\bar{x}}$
 \item enumerate and store $z\text{Stab}_U(\bar{z})$
 \item find $\text{Stab}_U(z) \leq \text{Stab}_U(\bar{z})$ and thus $|zU| = |xU|$
\end{itemize}

Algorithm (Looking up $z \in X$)

\begin{itemize}
 \item \textbf{Input:} $z \in X$, some stored xU
 \item look up $u_{\bar{z}}$ and compute $w := zu_{\bar{z}}$
 \item look up w in list of stored points
 \item $z \in xU$ iff w already stored
\end{itemize}
Enumerating orbits of Co_1 on $\mathbb{P}(F_24^5)$

The Problem

The Question

The Action

The Size

Enumerating large Orbits

Standard orbit enumeration

Using one helper subgroup

Orbit by suborbits

Using two helper subgroups

Halves of orbits

The Solution

Finding homomorphisms

Finding (small) orbits

Finding all orbits

Verification of Disjointness

The Result

Memory and Runtime Data

Algorithm (Orbit by suborbits)

Input: $G = \langle g_1, \ldots, g_r \rangle$ acting on X, $x \in X$

store xU and set $l := [x]$

repeat forever:

- for z in l:
 - for g in $[g_1, \ldots, g_r]$:
 - if zgU already stored:
 - compute stabiliser element
 - else:
 - store zgU
 - append zg to l

exit if orbit and stabiliser ready

for z in l:

- for u in generators of U:
 - append zu to l

Output: l, U-suborbits, generators for $\text{Stab}_G(x)$
Using two helper subgroups

\[U < V < G \text{ two helper subgroups} \]

\[\hat{\cdot} : X \rightarrow Z, \quad \hat{\cdot} : Z \rightarrow Y, \quad \hat{\cdot} : X \rightarrow Z \rightarrow Y \]

hom. of \(V \)-sets \quad hom. of \(U \)-sets

\[\implies \text{can archive} \ U \text{-suborbits in} \ Z \text{ and} \ X! \]

Preparations:

- enumerate \(Z \) completely by \(U \)-orbits
- choose one \(U \)-minimal point in each \(V \)-orbit of \(Z \), call it \(V \)-minimal
- call \(x \in X \) \(V \)-minimal, iff \(\hat{x} \in Z \) is \(V \)-minimal
- compute a transversal \(T : V = \bigcup_{t \in T} tU \)
- for every \(U \)-minimal point in \(z \in Z \) store:
 - \(\text{Stab}_V(z) \) if \(z \) is \(V \)-minimal
 - nothing if the \(V \)-minimal point of \(zV \) lies in \(zU \)
 - an element \(t_z \in T \) such that \(zt_zU \) contains the \(V \)-minimal point of \(zV \)
V-minimalising

Algorithm (V-minimalisation)

Input: $x \in X$

lookup $u \in U$ such that $w := xu$ is U-minimal

($\implies \hat{w} \in V$ is U-minimal)

if $\hat{w}U$ does not contain the V-minimal point of $\hat{w}V$:

look up $t \in T$ such that $\hat{w}tU$ contains it

set $w := wt$

look up $u' \in U$ such that wu' is U-minimal

set $w := wu'$

else:

set $t := 1$ and $u' := 1$

(now w is U-minimal and $\hat{w}U$ contains the V-minimal point of $\hat{w}V$)

unless \hat{w} is the V-minimal point:

find $s \in \text{Stab}_U(\bar{w})$ with $\hat{w}s$ V-minimal

Output: $v_x := utu's \in V$ such that xv_x is V-minimal
Enumerating orbits of Co_1 on $\mathcal{P}(\mathbb{F}_5^{24})$

The Problem

The Question

The Action

The Size

Enumerating large Orbits

Standard orbit enumeration
Using one helper subgroup
Orbit by suborbits
Using two helper subgroups
Halves of orbits

The Solution

Finding homomorphisms
Finding (small) orbits
Finding all orbits
Verification of Disjointness
The Result
Memory and Runtime Data

Evolution of an orbit enumeration

N–orbit: 90,699,264 vectors
90%: 5,3 min
80%: 6,7 min
75%: 5,3 min
50%: 6,7 min
25%: 18,3 min
100%

This is a typical time evolution for orbit enumerations!
A half is enough!

Assume we

- know $|G|$,
- already have enumerated some part of xG, and
- already know some $S < \text{Stab}_G(x)$ and $|S|$.

Then:

$$2 \cdot \text{Size(enumerated part)} \cdot |S| \geq |G|$$

if and only if

- S already is the full stabiliser $\text{Stab}_G(x)$ and
- we already have enumerated at least half of $|xG|$}

because if $S < \text{Stab}_G(x)$ then the index is at least 2.
Enumerating orbits of Co_1 on $\mathbb{P}(F_2^{24})$

The Problem
The Question
The Action
The Size

Enumerating large Orbits
Standard orbit enumeration
Using one helper subgroup
Orbit by suborbits
Using two helper subgroups
Halves of orbits

The Solution
Finding homomorphisms
Finding (small) orbits
Finding all orbits
Verification of Disjointness
The Result
Memory and Runtime Data

Finding homomorphisms

Let G act linearly on a F-vectorspace M:

$$\rho : G \rightarrow \text{End}_F(M)$$

$N < M$ a G-invariant subspace,
$\pi : M \rightarrow M/N$ the canonical map.

Then the following diagram commutes for all $g \in G$:

$$
\begin{array}{ccc}
M & \xrightarrow{\cdot g} & M \\
\downarrow{\pi} & & \downarrow{\pi} \\
M/N & \xrightarrow{\cdot g} & M/N \\
\end{array}
$$

with the induced action on M/N.

The same holds for the projective action, if we replace

- M by $\mathbb{P}(M)$ and
- $\mathbb{P}(M/N)$ by $\mathbb{P}(M/N) \cup \{0\}$.

Finding orbits

We can now enumerate halves of orbits.

But how do we avoid enumerating them more than once?

Assume we “know” a half of xG, then for some $w \in X$ we can still check, whether $w \in xG$:

Algorithm (Membership test in half-orbit)

Input: $w \in X$ and at least a half of xG.
for 100 random elements $g \in G$:
 if wg in half of xG:
 return True
return False

Find bigger orbits by random search.

But how to find small orbits?
Finding the small orbits

Short orbits have big stabilisers.

Guess stabilisers:
- use maximal subgroups (→ Rob’s WWW Atlas)
- find invariant subspaces (→ MEATAXE)

Guess elements of stabilisers:
- use conjugacy class reps. (→ Rob’s WWW Atlas)
- try vectors in eigenspaces
Enumerating orbits of \(\text{Co}_1 \) on \(\mathbb{P}(\mathbb{F}_5^{24}) \)

The Problem

The Question

The Action

The Size

Enumerating large Orbits

- Standard orbit enumeration
- Using one helper subgroup
- Orbit by suborbits
- Using two helper subgroups
- Halves of orbits

The Solution

Finding homomorphisms

Finding (small) orbits

Finding all orbits

Verification of Disjointness

The Result

Memory and Runtime Data

Finding all orbits

Build up a database of halves of pairwise disjoint orbits.

Produce representative candidates for the small orbits.

Produce random representatives for the big orbits.

For all vectors: Test if they are in a known orbit half. If not, enumerate half of new orbit.

Do this until the sum of the orbit lengths is the total number of points.
Enumerating orbits of Co_1 on $\mathbb{P}(\mathbb{F}_5^{24})$

The Problem

The Question

The Action

The Size

Enumerating large Orbits

Standard orbit enumeration
Using one helper subgroup
Orbit by suborbits
Using two helper subgroups
Halves of orbits

The Solution

Finding homomorphisms
Finding (small) orbits
Finding all orbits
Verification of Disjointness
The Result
Memory and Runtime Data

Verification of Disjointness

How can we prove that two orbits are different knowing only half of them?

Solution: Enumerate 51% of the orbits!

Lemma (Disjointness)

Two subsets of xG of size $>|xG|/2$ intersect nontrivially.

Algorithm (Disjointness proof)

Input: $M \subseteq xG$ with $2 \cdot |M| > |xG|$ and $M' \subseteq x'G$ with $2 \cdot |M'| > |x'G|$ assume both M and M' are unions of V-sets
Check whether a V-orbit rep. of M is in M' or not.
Enumerating orbits of \(\text{Co}_1 \) on \(\mathbb{P}(\mathbb{F}_5^{24}) \)

The Problem
The Question
The Action
The Size
Enumerating large Orbits
Standard orbit enumeration
Using one helper subgroup
Orbit by suborbits
Using two helper subgroups
Halves of orbits
The Solution
Finding homomorphisms
Finding (small) orbits
Finding all orbits
Verification of Disjointness
The Result
Memory and Runtime Data

The orbit lengths of the 48 orbits of \(\text{Co}_1 \) on \(\mathbb{P}(\mathbb{F}_5^{24}) \) are:

<table>
<thead>
<tr>
<th>Orbit Length</th>
<th>98 280</th>
<th>636 539 904 000</th>
<th>103 119 464 448 000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 386 560</td>
<td>1 080 188 928 000</td>
<td>180 459 062 784 000</td>
</tr>
<tr>
<td></td>
<td>199 017 000</td>
<td>1 611 241 632 000</td>
<td>180 459 062 784 000</td>
</tr>
<tr>
<td></td>
<td>226 044 000</td>
<td>4 687 248 384 000</td>
<td>193 348 995 840 000</td>
</tr>
<tr>
<td></td>
<td>2 314 690 560</td>
<td>4 687 248 384 000</td>
<td>262 485 909 504 000</td>
</tr>
<tr>
<td></td>
<td>4 577 391 000</td>
<td>9 374 496 768 000</td>
<td>300 765 104 640 000</td>
</tr>
<tr>
<td></td>
<td>4 629 381 120</td>
<td>12 889 933 056 000</td>
<td>524 971 819 008 000</td>
</tr>
<tr>
<td></td>
<td>16 982 784 000</td>
<td>12 889 933 056 000</td>
<td>721 836 251 136 000</td>
</tr>
<tr>
<td></td>
<td>46 872 483 840</td>
<td>17 186 577 408 000</td>
<td>773 395 983 360 000</td>
</tr>
<tr>
<td></td>
<td>67 135 068 000</td>
<td>17 823 117 312 000</td>
<td>824 955 715 584 000</td>
</tr>
<tr>
<td></td>
<td>93 744 967 680</td>
<td>21 873 825 792 000</td>
<td>824 955 715 584 000</td>
</tr>
<tr>
<td></td>
<td>318 269 952 000</td>
<td>21 873 825 792 000</td>
<td>1 203 060 418 560 000</td>
</tr>
<tr>
<td></td>
<td>402 810 408 000</td>
<td>32 998 228 623 360</td>
<td>1 443 672 502 272 000</td>
</tr>
<tr>
<td></td>
<td>407 586 816 000</td>
<td>51 559 732 224 000</td>
<td>1 924 896 669 696 000</td>
</tr>
<tr>
<td></td>
<td>407 586 816 000</td>
<td>69 296 280 109 056</td>
<td>2 165 508 753 408 000</td>
</tr>
<tr>
<td></td>
<td>563 934 571 200</td>
<td>103 119 464 448 000</td>
<td>2 887 345 004 544 000</td>
</tr>
</tbody>
</table>

Long limit: 2 980 232 238 769 531

\[\implies \text{no long orbit!} \]
Memory and Runtime Data

In the end, the calculation

- used three helper subgroups: $U_1 < U_2 < U_3 < \text{Co}_1$
- of orders: 10 752, 371 589 120 and 89 181 388 800,
- using quotients of codimensions 8, 8 and 16,
- needed 2.3 Gigabytes of main memory on one PC
- and about 2.5 hours of CPU time,
- stored about 30 000 000 vectors altogether
- thereby saving a factor of about 500 000 000, and
- was performed in GAP using the orb package.