Generalisations of Small Cancellation Theory

Max Neunhöffer

joint work with Jeffrey Burdges, Stephen Linton, Richard Parker and Colva Roney-Dougal

NBSAN meeting St Andrews, 9 April 2013
We draw connected finite graphs in the plane and label them:
We draw connected finite graphs in the plane and label them:

Faces are oriented clockwise.
We draw connected finite graphs in the plane and label them:

Faces are oriented clockwise.
We view each edge as a pair of opposite directed edges: half-edges.
We draw connected finite graphs in the plane and label them:

Faces are oriented clockwise.
We view each edge as a pair of opposite directed edges: half-edges.
Each half-edge is labelled at the start vertex and along the half-edge.
The diagram boundary problem

Let R be a finite set of cyclic words, called relators.
Let R be a finite set of cyclic words, called relators.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w, whether or not there is a diagram such that

- every *internal region* is labelled by a *relator*, and
- the *external boundary* is labelled by w.
Diagrams and their problems

The diagram boundary problem

Max Neunhöffer (University of St Andrews)
Generalisations of Small Cancellation Theory
9 April 2013 4 / 20
Rules for the labels

We label every **half-edge** with **two symbols**,
- one for the **corner** to the right of where it starts, and
- one for the **right hand side** of it:

![Diagram](image)

We now need **rules** for the **corner labels** and the **edge labels**.
Definition (Corner structures)

A **corner structure** is a set S with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

$$\text{if } xy \in S_+ \text{ for } x, y \in S, \text{ then } yx \in S_+.$$

The elements in S_+ are called **acceptors**.
Definition (Corner structures)

A corner structure is a set S with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

$$\text{if } xy \in S_+ \text{ for } x, y \in S, \text{ then } yx \in S_+.$$

The elements in S_+ are called acceptors.

Usually we will have: for all $x \in S$ there is a $y \in S$ with $xy \in S_+$.
Definition (Corner structures)

A corner structure is a set S with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

$$\text{if } xy \in S_+ \text{ for } x, y \in S, \text{ then } yx \in S_+.$$

The elements in S_+ are called acceptors. Usually we will have: for all $x \in S$ there is a $y \in S$ with $xy \in S_+$.

Lemma (Cyclicity)

Let S be a corner structure, if $s_1 s_2 \cdots s_k \in S_+$, then all rotations $s_i s_{i+1} \cdots s_k s_1 s_2 \cdots s_{i-1} \in S_+$.
Definition (Corner structures)

A corner structure is a set S with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

$$\text{if } xy \in S_+ \text{ for } x, y \in S, \text{ then } yx \in S_+. $$

The elements in S_+ are called acceptors.

Usually we will have: for all $x \in S$ there is a $y \in S$ with $xy \in S_+$.

Lemma (Cyclicity)

Let S be a corner structure, if $s_1 s_2 \cdots s_k \in S_+$, then all rotations $s_i s_{i+1} \cdots s_k s_1 s_2 \cdots s_{i-1} \in S_+$.

Vertex rules

The corner labels are from a corner structure S.

Definition (Corner structures)

A corner structure is a set S with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

$$ \text{if } xy \in S_+ \text{ for } x, y \in S, \text{ then } yx \in S_+. $$

The elements in S_+ are called acceptors.

Usually we will have: for all $x \in S$ there is a $y \in S$ with $xy \in S_+$.

Lemma (Cyclicity)

Let S be a corner structure, if $s_1 s_2 \cdots s_k \in S_+$, then all rotations $s_i s_{i+1} \cdots s_k s_1 s_2 \cdots s_{i-1} \in S_+$.

Vertex rules

The corner labels are from a corner structure S, a vertex is valid, if the clockwise product of its corner labels is an acceptor.
Examples of corner structures
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_+ := \{1\}$.

Note: $rl = e$ and $lr = s$, cyclicity, "inverses", two idempotents.
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$.
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_{+} := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_{+} := \{1_{G_i} \mid 1 \leq i \leq k\}$.
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \leq i \leq k\}$. Elements of a single G_i multiply as before.
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \leq i \leq k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \leq i \leq k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0, identities accept.
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \leq i \leq k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0, identities accept.
- $K_6 := \{s, t, e, b, r, l\}$.
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \leq i \leq k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0, identities accept.
- $K_6 := \{s, t, e, b, r, l\}$, $K_6^+ := \{s, e\}$,
Examples of corner structures

- Let G be a group. Let $P := G$ and $P_{+} := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_{+} := \{1_{G_i} \mid 1 \leq i \leq k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0, identities accept.
- $K_6 := \{s, t, e, b, r, l\}$, $K_{6+} := \{s, e\}$,

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>t</th>
<th>e</th>
<th>b</th>
<th>r</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>.</td>
<td>s</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>t</td>
<td>s</td>
<td>t</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>l</td>
</tr>
<tr>
<td>e</td>
<td>.</td>
<td>.</td>
<td>e</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>b</td>
<td>.</td>
<td>.</td>
<td>e</td>
<td>b</td>
<td>r</td>
<td>.</td>
</tr>
<tr>
<td>r</td>
<td>.</td>
<td>r</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>e</td>
</tr>
<tr>
<td>l</td>
<td>.</td>
<td>.</td>
<td>l</td>
<td>s</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Note: $rl = e$ and $lr = s$, cyclicity, “inverses”, two idempotents.
Definition (Edge alphabet)

An edge alphabet is a set X with an involution $\overline{\cdot} : X \to X$.

(This is actually a special case of a corner structure.)

Edge rules
The edge labels are from an edge alphabet, a pair of half-edges forming an edge with labels X and Y is valid, if $Y = \overline{X}$. (For the experts: This is a generalisation of the rules of van Kampen diagrams.)
Definition (Edge alphabet)

An edge alphabet is a set X with an involution $\overline{\cdot} : X \to X$.

(This is actually a special case of a corner structure.)
Definition (Edge alphabet)

An edge alphabet is a set X with an involution $\overline{\cdot} : X \rightarrow X$.

(This is actually a special case of a corner structure.)

Edge rules

The edge labels are from an edge alphabet, a pair of half-edges forming an edge with labels X and Y is valid, if $Y = \overline{X}$.
Definition (Edge alphabet)

An edge alphabet is a set X with an involution $\overline{\cdot} : X \to X$.

(This is actually a special case of a corner structure.)

Edge rules

The edge labels are from an edge alphabet, a pair of half-edges forming an edge with labels X and Y is valid, if $Y = \overline{X}$.

(For the experts:
This is a generalisation of the rules of van Kampen diagrams.)
Let S be a corner structure and X be an edge alphabet.

Definition (Set of relators)

A set of relators R is a finite set of cyclic alternating words in S and X.

Definition (Valid diagram)

Let R be a set of relators in S and X. A valid diagram is:

A finite plane graph with half-edge set \hat{E} and a labelling function $\ell : \hat{E} \to S \times X$, $e \mapsto (\ell_S(e), \ell_X(e))$, such that

$\ell_S(e_1) \cdot \ell_S(e_2) \cdot \ell_S(e_3) \cdot \ldots \cdot \ell_S(e_k) \in S^+$ for every clockwise cyclic sequence e_1, e_2, \ldots, e_k of half-edges leaving the same vertex,

$\ell_X(e) = \ell_X(e')$ for all edges $\{e, e'\}$ consisting of half-edges e, e',

$(\ell_S(e_1), \ell_X(e_1), ..., \ell_S(e_k), \ell_X(e_k)) \not\equiv R$ for every clockwise cycle $(e_1, e_2, ..., e_k) \not\equiv$ of half-edges around an internal face.
Let S be a corner structure and X be an edge alphabet.

Definition (Set of relators)

A set of relators R is a **finite** set of **cyclic alternating words** in S and X.

Definition (Valid diagram)

Let R be a set of relators in S and X. A **valid diagram** is:

- a **finite plane graph** with half-edge set \hat{E} and a **labelling function** $\ell : \hat{E} \to S \times X$, $e \mapsto (\ell_S(e), \ell_X(e))$, such that
Let S be a corner structure and X be an edge alphabet.

Definition (Set of relators)

A set of relators R is a finite set of cyclic alternating words in S and X.

Definition (Valid diagram)

Let R be a set of relators in S and X. A valid diagram is:

- a finite plane graph with half-edge set \hat{E} and a labelling function $\ell : \hat{E} \to S \times X$, $e \mapsto (\ell_S(e), \ell_X(e))$, such that
 - $\ell_S(e_1) \cdot \ell_S(e_2) \cdot \ell_S(e_3) \cdots \ell_S(e_k) \in S_{\pm}$ for every clockwise cyclic sequence e_1, e_2, \ldots, e_k of half-edges leaving the same vertex,
 - $\ell_X(e) = \ell_X(e')$ for all edges $\{e, e'\}$ consisting of half-edges e, e',
Let S be a corner structure and X be an edge alphabet.

Definition (Set of relators)

A set of relators R is a finite set of cyclic alternating words in S and X.

Definition (Valid diagram)

Let R be a set of relators in S and X. A valid diagram is:

- a finite plane graph with half-edge set \hat{E} and a labelling function $\ell : \hat{E} \to S \times X$, $e \mapsto (\ell_S(e), \ell_X(e))$, such that
 - $\ell_S(e_1) \cdot \ell_S(e_2) \cdot \ell_S(e_3) \cdot \cdots \cdot \ell_S(e_k) \in S_+$ for every clockwise cyclic sequence e_1, e_2, \ldots, e_k of half-edges leaving the same vertex,
 - $\ell_X(e) = \ell_X(e')$ for all edges $\{e, e'\}$ consisting of half-edges e, e',
 - $(\ell_S(e_1), \ell_X(e_1), \ldots, \ell_S(e_k), \ell_X(e_k)) \in R$ for every clockwise cycle (e_1, e_2, \ldots, e_k) of half-edges around an internal face.
Let $\langle S; X \mid R \rangle$ be a presentation, that is:
- S is a corner structure,
- X is an edge alphabet and
- R is a set of relators in S and X.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic alternating word w in S and X whether or not there is a valid diagram such that the external face is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function $D: \mathbb{N} \rightarrow \mathbb{N}$, such that for every cyclic alternating word w in S and X of length $2k$ that is the boundary label of a valid diagram, there is one with at most $D(k)$ internal faces.

If there is a linear D, we call $\langle S; X \mid R \rangle$ hyperbolic.
Let \(\langle S; X \mid R \rangle \) be a presentation, that is:

- \(S \) is a corner structure,
- \(X \) is an edge alphabet and
- \(R \) is a set of relators in \(S \) and \(X \).

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic alternating word \(w \) in \(S \) and \(X \) whether or not there is a valid diagram such that the external face is labelled by \(w \).

Problem (Isoperimetric inequality)

Algorithmically find and prove a function \(D : \mathbb{N} \rightarrow \mathbb{N} \), such that for every cyclic alternating word \(w \) in \(S \) and \(X \) of length \(2k \) that is the boundary label of a valid diagram,
Let \(\langle S; X \mid R \rangle \) be a presentation, that is:
- \(S \) is a corner structure,
- \(X \) is an edge alphabet and
- \(R \) is a set of relators in \(S \) and \(X \).

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic alternating word \(w \) in \(S \) and \(X \) whether or not there is a valid diagram such that the external face is labelled by \(w \).

Problem (Isoperimetric inequality)

Algorithmically find and prove a function \(D : \mathbb{N} \to \mathbb{N} \), such that for every cyclic alternating word \(w \) in \(S \) and \(X \) of length \(2k \) that is the boundary label of a valid diagram, there is one with at most \(D(k) \) internal faces.
Let \(\langle S; X \mid R \rangle \) be a presentation, that is:

- \(S \) is a corner structure,
- \(X \) is an edge alphabet and
- \(R \) is a set of relators in \(S \) and \(X \).

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic alternating word \(w \) in \(S \) and \(X \) whether or not there is a valid diagram such that the external face is labelled by \(w \).

Problem (Isoperimetric inequality)

Algorithmically find and prove a function \(D : \mathbb{N} \to \mathbb{N} \), such that for every cyclic alternating word \(w \) in \(S \) and \(X \) of length \(2k \) that is the boundary label of a valid diagram, there is one with at most \(D(k) \) internal faces. If there is a linear \(D \), we call \(\langle S; X \mid R \rangle \) hyperbolic.
With K_6 we can do rewrite systems, if no rewrite has an empty side:

\[
S = \begin{bmatrix}
 s & t & e & b & r & l \\
 s & . & s & . & . & . \\
 t & . & s & t & . & l \\
 e & . & . & e & . & . \\
 b & . & . & e & b & r \\
 r & . & . & . & . & e \\
 l & . & . & . & l & s \\
\end{bmatrix}, \quad S_+ = \{s, e\}
\]

$X = \{A, B, C, D, E, F, G, U\}$ (id$_X$ is $\bar{0}$)

This encodes $UABCG \rightarrow DEF$ using:

\[
\{ABC \rightarrow DE, UD \rightarrow A, EFG \rightarrow BC\}
\]
With K_6 we can do rewrite systems, if no rewrite has an empty side:

$$S = \begin{array}{ccccccc}
s & t & e & b & r & l \\
s & . & s & . & . & . & . \\
t & s & t & . & . & l & . \\
e & . & . & e & . & . & . \\
b & . & . & e & b & r & . \\
r & . & r & . & . & . & e \\
l & . & . & l & . & s & . \\
\end{array}, \quad S_+ = \{s, e\}$$

$$X = \{A, B, C, D, E, F, G, U\} \ (\text{id}_X)$$

This encodes $UABCG \rightarrow DEF$ using:

$$\{ABC \rightarrow DE, UD \rightarrow A, EFG \rightarrow BC\}$$

$ABC \rightarrow DE$ is encoded as $(bCrBrAtDlE)\circ$,
With K_6 we can do rewrite systems, if no rewrite has an empty side:

$$S = \begin{array}{cccccc}
 s & t & e & b & r & l \\
 s & . & s & . & . & . \\
 t & s & t & . & . & l \\
 e & . & . & e & . & . \\
 b & . & . & e & b & r \\
 r & . & r & . & . & e \\
 l & . & . & l & s & . \\
\end{array}, \quad S_+ = \{s, e\}
$$

$$X = \{A, B, C, D, E, F, G, U\} \quad (\text{id}_X)$$

This encodes $UABCG \rightarrow DEF$ using:

$$\{ABC \rightarrow DE, UD \rightarrow A, EFG \rightarrow BC\}$$

$ABC \rightarrow DE$ is encoded as $(bCrBrAtDlE)^\odot$, we “prove” $(sUlAlBiCiGeFrErD)^\odot$.
With K_6 we can do rewrite systems, if no rewrite has an empty side:

\[
S = \begin{array}{cccccc}
 & s & t & e & b & r \\
 s & . & s & . & . & . \\
 t & s & t & . & . & l \\
 e & . & . & e & . & . \\
 b & . & . & e & b & r \\
 r & . & r & . & . & e \\
 l & . & . & l & s & .
\end{array}, \quad S_+ = \{s, e\}
\]

$X = \{A, B, C, D, E, F, G, U\}$ (\(\overline{\cdot}\) is \(\text{id}_X\))

This encodes $UABC \rightarrow DEF$ using:

\[
\{ABC \rightarrow DE, UD \rightarrow A, EFG \rightarrow BC\}
\]

$ABC \rightarrow DE$ is encoded as $(bCrBrAtDlE)^\circ$, we “prove” $(sUlAlBICIGeFrErD)^\circ$.

S accepts $st^* + eb^* + rt^* lb^*$ and all rotations.
These diagrams and their two fundamental problems encode
Other Applications

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
These diagrams and their two fundamental problems encode
- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
Other Applications

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles
Other Applications

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
Other Applications

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- the word problem in monoids?
Other Applications

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- the word problem in monoids?
- computations of non-deterministic Turing machines?
Other Applications

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- the word problem in monoids?
- computations of non-deterministic Turing machines?
- etc. ???
Other Applications

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- the word problem in monoids?
- computations of non-deterministic Turing machines?
- etc. ???

You just have to choose the right corner structure and edge alphabet!
Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:
Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:
- compute the finite list of all possible edges,
Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:
- compute the finite list of all possible edges,
- this produces a new edge alphabet,

Euler’s formula

The total sum of our combinatorial curvature is always $+1$.
Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:
- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths,

Euler's formula
The total sum of our combinatorial curvature is always $+1$.
Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths, refer to original edges as mini-edges,
Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths, refer to original edges as mini-edges,
- denote the new set of half-edges in a diagram by \(\hat{E} \).
Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:
 - compute the finite list of all possible edges,
 - this produces a new edge alphabet, edges now have different lengths, refer to original edges as mini-edges,
 - denote the new set of half-edges in a diagram by \hat{E}.

Combinatorial curvature: We endowed
 - each vertex with $+1$ unit of combinatorial curvature,
 - each edge with -1 unit of combinatorial curvature and
 - each internal face with $+1$ unit of combinatorial curvature.

Euler's formula: The total sum of our combinatorial curvature is always $+1$.

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 9 April 2013 13 / 20
Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:
- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths, refer to original edges as mini-edges,
- denote the new set of half-edges in a diagram by \hat{E}.

Combinatorical curvature: We endow
- each vertex with $+1$ unit of combinatorial curvature,
- each edge with -1 unit of combinatorial curvature and
- each internal face with $+1$ unit of combinatorial curvature.

Euler’s formula

The total sum of our combinatorial curvature is always $+1$.
Idea (Curvature redistribution — Officers)

We redistribute the curvature locally in a conservative way.
We redistribute the curvature locally in a conservative way. We call a curvature redistribution scheme an “officer”.

In Phase 1 Tom moves the negative curvature to the vertices:

A vertex with valency $v \geq 3$ will now have $\frac{-1}{2} - \frac{1}{2} < 0$.

Faces still have $+1$, edges now have 0.
Idea (Curvature redistribution — Officers)

We redistribute the curvature locally in a conservative way. We call a curvature redistribution scheme an “officer”.

Here, I want to describe our “Officer Tom”:
Idea (Curvature redistribution — Officers)

We redistribute the curvature locally in a conservative way. We call a curvature redistribution scheme an “officer”.

Here, I want to describe our “Officer Tom”:

In Phase 1 Tom moves the negative curvature to the vertices:

A vertex with valency $v \geq 3$ will now have $+1 - \frac{v}{2} < 0$.
An algorithmic approach

Curvature redistribution — Phase 1 of officer Tom

Idea (Curvature redistribution — Officers)

We redistribute the curvature locally in a conservative way. We call a curvature redistribution scheme an “officer”.

Here, I want to describe our “Officer Tom”:

In Phase 1 Tom moves the negative curvature to the vertices:

A vertex with valency $v \geq 3$ will now have $+1 - \frac{v}{2} < 0$. Faces still have $+1$, edges now have 0.
In Phase 2 Tom moves the negative curvature to the vertices:

Corner values for Tom

A corner value c of Tom depends on two edges that are adjacent on a face.
In Phase 2 Tom moves the **negative curvature** to the vertices:

A corner value c of Tom depends on two edges that are adjacent on a face. Tom moves c units of curvature from the face to the vertex.
In Phase 2 Tom moves the **negative curvature** to the vertices:

Corner values for Tom

A corner value c of Tom depends on **two edges** that are adjacent on a **face**. Tom moves c units of curvature **from the face to the vertex**. The **default value** for c is $1/6$ if the vertex can have **valency 3** and $1/4$ otherwise.
Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has ≤ 0 curvature.
- every edge has 0 curvature,
An algorithmic approach

What Tom wants to achieve

Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution:

- every internal face has \(< -\varepsilon \) curvature (for some explicit \(\varepsilon > 0 \)),
- every vertex has \(\leq 0 \) curvature,
- every edge has 0 curvature,
- every face with more than one external edge has \(\leq 0 \) curvature.
Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has \(< -\varepsilon\) curvature (for some explicit \(\varepsilon > 0\)),
- every vertex has \(\leq 0\) curvature,
- every edge has \(0\) curvature,
- every face with more than one external edge has \(\leq 0\) curvature.

Consequence

\[\implies \text{All the positive curvature is on faces touching the boundary once.} \]
Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has \(< -\varepsilon\) curvature (for some explicit \(\varepsilon > 0\)),
- every vertex has \(\leq 0\) curvature.
- every edge has 0 curvature,
- every face with more than one external edge has \(\leq 0\) curvature.

Consequence

\[\implies \text{All the positive curvature is on faces touching the boundary once.} \]

Facts:

- All boundaries of diagrams have a permitted diagram as proof.
Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution
 - every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
 - every vertex has ≤ 0 curvature.
 - every edge has 0 curvature,
 - every face with more than one external edge has ≤ 0 curvature.

Consequence

\implies All the positive curvature is on faces touching the boundary once.

Facts:
 - All boundaries of diagrams have a permitted diagram as proof.
 - The total positive curvature $\leq n$ (boundary length).
Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution:

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has ≤ 0 curvature,
- every edge has 0 curvature,
- every face with more than one external edge has ≤ 0 curvature.

Consequence

\implies All the positive curvature is on faces touching the boundary once.

Facts:

- All boundaries of diagrams have a permitted diagram as proof.
- The total positive curvature $\leq n$ (boundary length).
- Let $F := \#\text{internal faces}$, then

\[1 < n - F \cdot \varepsilon \]
Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution:

- every internal face has \(< -\varepsilon\) curvature (for some explicit \(\varepsilon > 0\)),
- every vertex has \(\leq 0\) curvature,
- every edge has 0 curvature,
- every face with more than one external edge has \(\leq 0\) curvature.

Consequence

\[\Rightarrow \text{All the positive curvature is on faces touching the boundary once.}\]

Facts:

- All boundaries of diagrams have a permitted diagram as proof.
- The total positive curvature \(\leq n\) (boundary length).
- Let \(F := \#\text{internal faces}\), then

\[1 < n - F \cdot \varepsilon \implies F < \varepsilon^{-1} \cdot n\]
Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $<-\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has ≤ 0 curvature.
- every edge has 0 curvature,
- every face with more than one external edge has ≤ 0 curvature.

Consequence

\implies All the positive curvature is on faces touching the boundary once.

Facts:

- All boundaries of diagrams have a permitted diagram as proof.
- The total positive curvature $\leq n$ (boundary length).
- Let $F := \#\text{internal faces}$, then

\[1 < n - F \cdot \varepsilon \implies F < \varepsilon^{-1} \cdot n \implies \text{hyperbolic} \]
Let $L := \{1, 2, \ldots, \ell\}$ and $a_1, a_2, \ldots, a_\ell \in \mathbb{R}$ and $S := \sum_{m \in L} a_m$.
Let \(L := \{1, 2, \ldots, \ell\} \) and \(a_1, a_2, \ldots, a_\ell \in \mathbb{R} \) and \(S := \sum_{m \in L} a_m \).
Define \(\pi_L : \mathbb{Z} \rightarrow L \) such that \(z \equiv \pi_L(z) \pmod{\ell} \).
Let $L := \{1, 2, \ldots, \ell\}$ and $a_1, a_2, \ldots, a_{\ell} \in \mathbb{R}$ and $S := \sum_{m \in L} a_m$. Define $\pi_L : \mathbb{Z} \to L$ such that $z \equiv \pi_L(z) \pmod{\ell}$.

Lemma (Goes up and stays up)

If $S \geq 0$ then there is a $j \in L$ such that for all $i \in \mathbb{N}$ the partial sum

$$s_{j,i} := \sum_{m=0}^{i-1} a_{\pi_L(j+m)} \geq 0.$$
Let $L := \{1, 2, \ldots, \ell\}$ and $a_1, a_2, \ldots, a_\ell \in \mathbb{R}$ and $S := \sum_{m\in L} a_m$. Define $\pi_L : \mathbb{Z} \to L$ such that $z \equiv \pi_L(z) \pmod{\ell}$.

Lemma (Goes up and stays up)

If $S \geq 0$ *then there is a* $j \in L$ *such that for all* $i \in \mathbb{N}$ *the partial sum*

$$s_{j,i} := \sum_{m=0}^{i-1} a_{\pi_L(j+m)} \geq 0.$$
Let $L := \{1, 2, \ldots, \ell\}$ and $a_1, a_2, \ldots, a_\ell \in \mathbb{R}$ and $S := \sum_{m \in L} a_m$. Define $\pi_L : \mathbb{Z} \to L$ such that $z \equiv \pi_L(z) \pmod{\ell}$.

Lemma (Goes up and stays up)

If $S \geq 0$ then there is a $j \in L$ such that for all $i \in \mathbb{N}$ the partial sum

$$s_{j,i} := \sum_{m=0}^{i-1} a_{\pi_L(j+m)} \geq 0.$$

Corollary

Assume that there are $k \in \mathbb{N}$ and $\varepsilon \geq 0$ such that for all $j \in L$ there is an $i \leq k$ with $s_{j,i} < -\varepsilon$, then $S < -\varepsilon \cdot \ell/k$.
Sunflower

To show that every internal face has curvature $< -\varepsilon$:

Use Goes Up and Stays Up on $\frac{L_1 + L_2}{2L} - c$.
To show that every internal vertex has curvature ≤ 0:

Use **Goes Up and Stays Up** on $c + \frac{1-v/2}{v} = c + \frac{2-v}{v}$.

\[\text{Diagram showing vertices and edges.} \]
To show that every internal vertex has curvature ≤ 0:

Use *Goes Up and Stays Up* on $c + \frac{1 - v/2}{v} = c + \frac{2 - v}{v}$.

Do valency $v = 3$ first, if nothing found, increase v.

Diagram:

- c_1
- c_2
- c_3
- c_4
To show that every internal vertex has curvature ≤ 0:

Use **Goes Up and Stays Up** on $c + \frac{1-v/2}{v} = c + \frac{2-v}{v}$.

Do valency $v = 3$ first, if nothing found, increase v.

This **terminates**: higher valencies tend to be **negatively curved** anyway.
Overview over Tom analysis

What have we achieved?

If we did not find any bad sunflower or poppy, we have determined an explicit ϵ, proved hyperbolicity, and can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppy, we can still improve our choices for the corner values (leads to difficult optimisation/linear program problems), forbid more diagrams (if possible) (need to show that every boundary is proved by a permitted one), or switch to a more powerful officer (with further sight or redistribution),...

and try again.

If $\langle S, X; R \rangle$ is not hyperbolic, this will not work.
Overview over Tom analysis

What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ε,
Overview over Tom analysis

What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ϵ,
- proved hyperbolicity, and

If $\langle S, X; R \rangle$ is not hyperbolic, this will not work.
Overview over Tom analysis

What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ε,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.
Overview over Tom analysis

What have we achieved?

If we did not find any bad sunflower or poppy, we have
- determined an explicit ε,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppy, we can still
- improve our choices for the corner values
 (leads to difficult optimisation/linear program problems),
An algorithmic approach

Overview over Tom analysis

What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ϵ,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppy, we can still

- improve our choices for the corner values
 (leads to difficult optimisation/linear program problems),
- forbid more diagrams (if possible)
 (need to show that every boundary is proved by a permitted one),
What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ε,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppy, we can still

- improve our choices for the corner values
 (leads to difficult optimisation/linear program problems),
- forbid more diagrams (if possible)
 (need to show that every boundary is proved by a permitted one),
- or switch to a more powerful officer
 (with further sight or redistribution), . . .
What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ε,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppy, we can still

- improve our choices for the corner values
 (leads to difficult optimisation/linear program problems),
- forbid more diagrams (if possible)
 (need to show that every boundary is proved by a permitted one),
- or switch to a more powerful officer
 (with further sight or redistribution), . . .

and try again.
What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ε,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppy, we can still

- improve our choices for the corner values (leads to difficult optimisation/linear program problems),
- forbid more diagrams (if possible) (need to show that every boundary is proved by a permitted one),
- or switch to a more powerful officer (with further sight or redistribution), . . .

and try again. If $\langle S, X; R \rangle$ is not hyperbolic, this will not work.