Actions, representations and various algebraic structures

Max Neunhöffer

University of St Andrews

12 November 2008
Actions and representations

An action of G on X is a map

$$A : X \times G \rightarrow X, \quad (x, g) \mapsto x \cdot g$$
Actions and representations

An action of G on X is a map

$$A : X \times G \rightarrow X, \quad (x, g) \mapsto x \cdot g$$

A representation of G on X is a map

$$R : G \rightarrow X^X = \{ f : X \rightarrow X \}$$
Actions and representations

An action of G on X is a map

$$A : X \times G \rightarrow X, \quad (x, g) \mapsto x \cdot g$$

A representation of G on X is a map

$$R : G \rightarrow X^X = \{ f : X \rightarrow X \}$$

The two concepts are the same:
Actions and representations

An action of G on X is a map

$$A : X \times G \to X, \quad (x, g) \mapsto x \cdot g$$

A representation of G on X is a map

$$R : G \to X^X = \{f : X \to X\}$$

The two concepts are the same:

given A, set

$$R(g) := (x \mapsto A(x, g)) = (x \mapsto x \cdot g)$$
Actions and representations

An action of \(G \) on \(X \) is a map

\[
A : X \times G \to X, \quad (x, g) \mapsto x \cdot g
\]

A representation of \(G \) on \(X \) is a map

\[
R : G \to X^X = \{f : X \to X\}
\]

The two concepts are the same:

given \(A \), set

\[
R(g) := (x \mapsto A(x, g)) = (x \mapsto x \cdot g)
\]

given \(R \), set

\[
A(x, g) := R(g)(x)
\]
Let \mathbb{F} be a field and G a finite group.
Group algebras — definition

Let F be a field and G a finite group.

$FG := \text{vector space with basis } G$, multiplication inherited from G and distributive law:

$$
\left(\sum_{g \in G} \lambda_g \cdot g \right) \cdot \left(\sum_{\tilde{g} \in G} \mu_{\tilde{g}} \cdot \tilde{g} \right) = \sum_{g, \tilde{g} \in G} \lambda_g \cdot \mu_{\tilde{g}} \cdot (g\tilde{g})
$$

for $\lambda_g, \mu_{\tilde{g}} \in F$.
Group algebras — definition

Let \(F \) be a field and \(G \) a finite group.

\[FG := \text{vector space with basis } G, \text{ multiplication inherited from } G \text{ and distributive law:} \]

\[
\left(\sum_{g \in G} \lambda_g \cdot g \right) \cdot \left(\sum_{\tilde{g} \in G} \mu_{\tilde{g}} \cdot \tilde{g} \right) = \sum_{g, \tilde{g} \in G} \lambda_g \cdot \mu_{\tilde{g}} \cdot (g\tilde{g})
\]

for \(\lambda_g, \mu_{\tilde{g}} \in F \).

\[FG := \{ f : G \to F \} \text{ with pointwise addition and convolution product:} \]

\[
(f \cdot h)(g) := \sum_{\tilde{g} \in G} f(g \cdot \tilde{g}^{-1}) \cdot h(\tilde{g})
\]

for \(f, h : G \to F \).
Group algebras — definition

Let \(\mathbb{F} \) be a field and \(G \) a finite group.

\[
\mathbb{F}G := \text{vector space with basis } G, \text{ multiplication inherited from } G \text{ and distributive law:}
\]

\[
\left(\sum_{g \in G} \lambda_g \cdot g \right) \cdot \left(\sum_{\tilde{g} \in G} \mu_{\tilde{g}} \cdot \tilde{g} \right) = \sum_{g, \tilde{g} \in G} \lambda_g \cdot \mu_{\tilde{g}} \cdot (g\tilde{g})
\]

for \(\lambda_g, \mu_{\tilde{g}} \in \mathbb{F} \).

\[
\mathbb{F}G := \{ f : G \to \mathbb{F} \} \text{ with pointwise addition and convolution product:}
\]

\[
(f \cdot h)(g) := \sum_{\tilde{g} \in G} f(g \cdot \tilde{g}^{-1}) \cdot h(\tilde{g})
\]

for \(f, h : G \to \mathbb{F} \).

\[
\mathbb{F}G := \text{associative } \mathbb{F}-\text{algebra with generators } G \text{ and relations } g \cdot \tilde{g} - (g\tilde{g}) = 0 \text{ for } g, \tilde{g} \in G.
\]
Group algebras — properties

\(\mathbb{F}:\) field, \(G:\) group, \(\mathbb{F}G:\) group algebra, \(V: \mathbb{F}\)-vector space.
Group algebras — properties

\(\mathbb{F} \): field, \(G \): group, \(\mathbb{F}G \): group algebra, \(V \): \(\mathbb{F} \)-vector space.

There is a bijection between

\[\{ \varphi : G \to \text{GL}(V) \mid \varphi \text{ is a group homomorphism} \} \]

and

\[\{ \psi : \mathbb{F}G \to \text{End}_\mathbb{F}(V) \mid \psi \text{ is an algebra homomorphism} \} \]
Group algebras — properties

\(F: \text{field}, \ G: \text{group}, \ FG: \text{group algebra}, \ V: F\text{-vector space}. \)

There is a bijection between

\[\{ \varphi : G \to \text{GL}(V) \mid \varphi \text{ is a group homomorphism} \} \]

and

\[\{ \psi : FG \to \text{End}_F(V) \mid \psi \text{ is an algebra homomorphism} \} \]

Given \(\varphi : G \to \text{GL}(V) \), define

\[\psi \left(\sum_{g \in G} \lambda_g \cdot g \right) := \sum_{g \in G} \lambda_g \cdot \varphi(g) \]

(use finite presentation).
Group algebras — properties

\(F: \text{field}, \ G: \text{group}, \ F[G]: \text{group algebra}, \ V: F\text{-vector space.} \)

There is a bijection between

\[
\{ \varphi : G \rightarrow \text{GL}(V) \mid \varphi \text{ is a group homomorphism} \}
\]

and

\[
\{ \psi : F[G] \rightarrow \text{End}_F(V) \mid \psi \text{ is an algebra homomorphism} \}
\]

Given \(\varphi : G \rightarrow \text{GL}(V) \), define

\[
\psi \left(\sum_{g \in G} \lambda_g \cdot g \right) := \sum_{g \in G} \lambda_g \cdot \varphi(g)
\]

(use finite presentation).

Given \(\psi : F[G] \rightarrow \text{End}_F(V) \), simply restrict \(\varphi := \psi \mid_G \), since

\[
1_V = \psi(1_G) = \psi(g \cdot g^{-1}) = \psi(g) \cdot \psi(g^{-1}) \quad \text{for all } g \in G.
\]
Modules

Definition (G-module or \(\mathbb{F}G \)-module)

An \(\mathbb{F} \)-vector space \(V \) together with

- a group homomorphism \(\varphi : G \to \text{GL}(V) \),
- or an algebra homomorphism \(\psi : \mathbb{F}G \to \text{End}_\mathbb{F}(V) \)

is called a **\(G \)-module over \(\mathbb{F} \)** or an **\(\mathbb{F}G \)**-module.
Modules

Definition (G-module or FG-module)

An F-vector space V together with

- a group homomorphism $\varphi : G \rightarrow GL(V)$,
- or an algebra homomorphism $\psi : FG \rightarrow \text{End}_F(V)$

is called a G-module over F or an FG-module.

This is nothing but

an F-vector space with an F-linear action for G.
Modules

Definition (G-module or FG-module)

An \mathbb{F}-vector space V together with
- a group homomorphism $\varphi : G \rightarrow \text{GL}(V)$,
- or an algebra homomorphism $\psi : \mathbb{F}G \rightarrow \text{End}_\mathbb{F}(V)$
is called a G-module over \mathbb{F} or an $\mathbb{F}G$-module.

This is nothing but

an \mathbb{F}-vector space with an \mathbb{F}-linear action for G.

This is nothing but

an \mathbb{F}-linear representation for G.
Kernels and faithfulness

Let $A : X \times G \to X$ be an action,
Kernels and faithfulness

Let $A : X \times G \to X$ be an action, or equivalently, let $R : G \to X^X$ be a representation.
Kernels and faithfulness

Let $A : X \times G \to X$ be an action, or equivalently, let $R : G \to X^X$ be a representation.

Depending on the types of G and X, it might make sense to speak of the kernel of the representation R or not.
Kernels and faithfulness

Let $A : X \times G \to X$ be an action, or equivalently, let $R : G \to X^X$ be a representation.

Depending on the types of G and X, it might make sense to speak of the kernel of the representation R or not.

Definition (Faithful representation/action)

We call the representation R (or the action A) **faithful**, if its kernel $\ker R$ is trivial.
Kernels and faithfulness

Let $A : X \times G \to X$ be an action, or equivalently, let $R : G \to X^X$ be a representation.

Depending on the types of G and X, it might make sense to speak of the kernel of the representation R or not.

Definition (Faithful representation/action)

We call the representation R (or the action A) **faithful**, if its kernel $\ker R$ is trivial.

Note: If a G-module V over \mathbb{F} is faithful, it does not necessarily follow that the corresponding $\mathbb{F}G$-module V is faithful!
Homomorphisms and isomorphisms

Let $A : X \times G \to X$ and $\tilde{A} : \tilde{X} \times G \to \tilde{X}$ be two actions.
Homomorphisms and isomorphisms

Let $A : X \times G \to X$ and $\tilde{A} : \tilde{X} \times G \to \tilde{X}$ be two actions.

Definition (G-homomorphism)

A homomorphism $\varphi : X \to \tilde{X}$ is called a G-homomorphism or G-equivariant, if

$$\varphi(x \cdot g) = \varphi(x) \cdot g$$

for all $x \in X$ and all $g \in G$.

Equivalently, this means that this diagram commutes:

$$X \times G \xrightarrow{A} \xrightarrow{\varphi \times \text{id}_G} \tilde{X} \times G \xrightarrow{\tilde{A}} \tilde{X}$$
Homomorphisms and isomorphisms

Let \(A : X \times G \to X \) and \(\tilde{A} : \tilde{X} \times G \to \tilde{X} \) be two actions.

Definition (G-homomorphism)

A homomorphism \(\varphi : X \to \tilde{X} \) is called a \(G \)-homomorphism or \(G \)-equivariant, if

\[
\varphi(x \cdot g) = \varphi(x) \cdot g \quad \text{for all } x \in X \text{ and all } g \in G.
\]

Equivalently, this means

\[
\varphi(A(x, g)) = \tilde{A}(\varphi(x), g) \quad \text{for all } x \in X \text{ and all } g \in G.
\]
Homomorphisms and isomorphisms

Let $A : X \times G \to X$ and $\tilde{A} : \tilde{X} \times G \to \tilde{X}$ be two actions.

Definition (G-homomorphism)

A homomorphism $\varphi : X \to \tilde{X}$ is called a G-homomorphism or G-equivariant, if

$$\varphi(x \cdot g) = \varphi(x) \cdot g \quad \text{for all } x \in X \text{ and all } g \in G.$$

Equivalently, this means

$$\varphi(A(x, g)) = \tilde{A}(\varphi(x), g) \quad \text{for all } x \in X \text{ and all } g \in G.$$

Equivalently, this means that this diagram commutes:

$$
\begin{array}{ccc}
X \times G & \overset{A}{\longrightarrow} & X \\
\downarrow{\varphi \times \text{id}_G} & & \downarrow{\varphi} \\
\tilde{X} \times G & \overset{\tilde{A}}{\longrightarrow} & \tilde{X}
\end{array}
$$
Homomorphisms and isomorphisms

Let $A : X \times G \to X$ and $\tilde{A} : \tilde{X} \times G \to \tilde{X}$ be two actions.

Definition (G-homomorphism)

A homomorphism $\varphi : X \to \tilde{X}$ is called a G-homomorphism or G-equivariant, if

$$\varphi(x \cdot g) = \varphi(x) \cdot g \quad \text{for all } x \in X \text{ and all } g \in G.$$

Equivalently, this means

$$\varphi(A(x, g)) = \tilde{A}(\varphi(x), g) \quad \text{for all } x \in X \text{ and all } g \in G.$$

Equivalently, this means that this diagram commutes:

\[
\begin{array}{ccc}
X \times G & \xrightarrow{A} & X \\
\varphi \times \text{id}_G & \downarrow & \varphi \\
\tilde{X} \times G & \xrightarrow{\tilde{A}} & \tilde{X}
\end{array}
\]

If φ has a G-equiv. inverse, it is called a G-isomorphism.
Subacts

Let G act on X, i.e. $A : X \times G \rightarrow X$.

Definition (G-invariant subset, Subact)

A subset $Y \subseteq X$ is called G-invariant, if

$$y \cdot g \in Y \quad \text{for all } y \in Y \text{ and all } g \in G.$$

The restriction $A|_{Y \times G}$ is then a map to Y and G acts on Y.

Actions and Reps

Max Neunhöffer

Group algebras

Modules

Faithfulness

Homomorphisms

Subacts

Factor acts

Extensions and direct sums

Indecomposability

Problems

Ordinary rep. theory

Modular rep. theory

Permutation groups

Matrix and projective groups

Orbits
Subacts

Let G act on X, i.e. $A : X \times G \rightarrow X$.

Definition (G-invariant subset, Subact)

A subset $Y \subseteq X$ is called G-invariant, if

$$y \cdot g \in Y \quad \text{for all } y \in Y \text{ and all } g \in G.$$

The restriction $A|_{Y \times G}$ is then a map to Y and G acts on Y. If $Y \subseteq X$ is also a substructure of X, we call Y a subact (or submodule resp.).
Subacts

Let G act on X, i.e. $A : X \times G \rightarrow X$.

Definition (G-invariant subset, Subact)

A subset $Y \subseteq X$ is called G-invariant, if

$$ y \cdot g \in Y \quad \text{for all } y \in Y \text{ and all } g \in G. $$

The restriction $A|_{Y \times G}$ is then a map to Y and G acts on Y. If $Y \subseteq X$ is also a substructure of X, we call Y a subact (or submodule resp.).

Recall: A permutation representation was called transitive if it has no proper subacts.
Subacts

Let G act on X, i.e. $A : X \times G \to X$.

Definition (G-invariant subset, Subact)

A subset $Y \subseteq X$ is called G-invariant, if

$$y \cdot g \in Y \quad \text{for all } y \in Y \text{ and all } g \in G.$$

The restriction $A|_{Y \times G}$ is then a map to Y and G acts on Y. If $Y \subseteq X$ is also a substructure of X, we call Y a subact (or submodule resp.).

Recall: A permutation representation was called transitive if it has no proper subacts.

Definition (Irreducible/simple module)

An $\mathbb{F}G$-module M is called irreducible or simple, if it has no submodules except 0 and M itself.
Factor acts

Let G act on X, i.e. $A : X \times G \to X$.

Definition (G-invariant partition, factor act)

Let $X = \bigcup_{i \in I} Y_i$ be partitioned such that

$$\forall i \in I \text{ and } g \in G, \text{ we have } Y_i \cdot g \subseteq Y_j \text{ for some } j \in I.$$

We say that the partition is **G-invariant** and get an action on the set of parts $Y := \{ Y_i \mid i \in I \}$:

$$Y_i \ast g := Y_j \quad \text{if} \quad Y_i \cdot g \subseteq Y_j.$$
Factor acts

Let G act on X, i.e. $A : X \times G \rightarrow X$.

Definition (G-invariant partition, factor act)

Let $X = \bigcup_{i \in I} Y_i$ be partitioned such that

$$\forall i \in I \text{ and } g \in G, \text{ we have } Y_i \cdot g \subseteq Y_j \text{ for some } j \in I.$$

We say that the partition is **G-invariant** and get an action on the set of parts $Y := \{Y_i \mid i \in I\}$:

$$Y_i \ast g := Y_j \text{ if } Y_i \cdot g \subseteq Y_j.$$

Recall: We call a permutation action **primitive**, if it has no non-trivial factor acts.
Let G act on X, i.e. $A: X \times G \rightarrow X$.

Definition (G-invariant partition, factor act)

Let $X = \bigcup_{i \in I} Y_i$ be partitioned such that

\[\forall \ i \in I \text{ and } g \in G, \text{ we have } Y_i \cdot g \subseteq Y_j \text{ for some } j \in I. \]

We say that the partition is G-invariant and get an action on the set of parts $Y := \{ Y_i \mid i \in I \}$:

\[Y_i \ast g := Y_j \text{ if } Y_i \cdot g \subseteq Y_j. \]

Recall: We call a permutation action primitive, if it has no non-trivial factor acts.

Note: We usually want extra conditions to ensure that Y has the same algebraic structure as X and the new action is a homomorphism of such structures for all g.
Extensions and direct sums

This is only about modules!
Extensions and direct sums

This is only about modules!

Let

\[0 \rightarrow W \xrightarrow{i} V \xrightarrow{\pi} U \cong V/W \rightarrow 0 \]

be a module \(V \) with a non-trivial submodule.
Extensions and direct sums

This is only about modules!

Let

\[0 \to W \xrightarrow{i} V \xrightarrow{\pi} U \cong V/W \to 0 \]

be a module \(V \) with a non-trivial submodule.

This sequence may or may not be split:

\[0 \to W \xrightarrow{i} V \xrightarrow{\pi} U \xleftarrow{r} V \to W \to 0 , \]

i.e. there is \(r : U \to W \) with \(\pi \circ r = \text{id}_U \).
Extensions and direct sums

This is only about modules!

Let

\[0 \rightarrow W \xrightarrow{i} V \xrightarrow{\pi} U \cong V/W \rightarrow 0 \]

be a module \(V \) with a non-trivial submodule.

This sequence may or may not be split:

\[0 \rightarrow W \xrightarrow{i} V \xrightarrow{\pi} U \xleftarrow{r} U \rightarrow 0 , \]

i.e. there is \(r : U \rightarrow W \) with \(\pi \circ r = \text{id}_U \).

If and only if it is split, the module \(V \) is isomorphic to the direct sum

\[V \cong W \oplus U. \]
Definition (Indecomposable module)

An F^G-module V is called **indecomposable** if it is not isomorphic to a direct sum of two proper submodules. Otherwise it is called **decomposable**.
Indecomposability and semisimplicity

Definition (Indecomposable module)

An $\mathbb{F}G$-module V is called **indecomposable** if it is not isomorphic to a direct sum of two proper submodules. Otherwise it is called **decomposable**.

Lemma (Decomposable implies reducible)

A **decomposable module is reducible**.
Indecomposability and semisimplicity

Definition (Indecomposable module)
An $\mathbb{F}G$-module V is called **indecomposable** if it is not isomorphic to a direct sum of two proper submodules. Otherwise it is called **decomposable**.

Lemma (Decomposable implies reducible)
A **decomposable module** is reducible.

Definition (Semisimple modules and algebras)
A module is called **semisimple**, if it is isomorphic to a direct sum of simple modules.
Indecomposability and semisimplicity

Definition (Indecomposable module)

An $\mathbb{F}G$-module V is called **indecomposable** if it is not isomorphic to a direct sum of two proper submodules. Otherwise it is called **decomposable**.

Lemma (Decomposable implies reducible)

A decomposable module is reducible.

Definition (Semisimple modules and algebras)

A module is called **semisimple**, if it is isomorphic to a direct sum of simple modules.

An \mathbb{F}-algebra \mathcal{A} is called **semisimple**, if every \mathcal{A}-module is semisimple.
Ordinary representation theory of groups

For a finite group, the group algebra $\mathbb{C}G$ is semisimple.
Ordinary representation theory of groups

For a finite group, the group algebra $\mathbb{C}G$ is semisimple.

The ordinary representation theory of groups solves:

Problem (Classification of simple modules)

Classify the isomorphism types of simple $\mathbb{C}G$-modules,
Ordinary representation theory of groups

For a finite group, the group algebra \(\mathbb{C}G \) is semisimple.

The ordinary representation theory of groups solves:

Problem (Classification of simple modules)

Classify the isomorphism types of simple \(\mathbb{C}G \)-modules, i.e. classify irreducible \(\mathbb{C}G \)-modules up to isomorphism.
Ordinary representation theory of groups

For a finite group, the group algebra $\mathbb{C}G$ is semisimple.

The ordinary representation theory of groups solves:

Problem (Classification of simple modules)

Classify the isomorphism types of simple $\mathbb{C}G$-modules, i.e. classify irreducible $\mathbb{C}G$-modules up to isomorphism.

Lemma (Characters)

Two representations

$$R_1 : G \to \text{GL}(V) \quad \text{and} \quad R_2 : G \to \text{GL}(W)$$

afforded by two $\mathbb{C}G$-modules V and W are isomorphic, if and only if their characters $\chi_1 = \text{Tr} \circ R_1$ and $\chi_2 = \text{Tr} \circ R_2$ are equal.
Ordinary representation theory of groups

For a finite group, the group algebra $\mathbb{C}G$ is semisimple.

The ordinary representation theory of groups solves:

Problem (Classification of simple modules)

Classify the isomorphism types of simple $\mathbb{C}G$-modules, i.e. classify irreducible $\mathbb{C}G$-modules up to isomorphism.

Lemma (Characters)

Two representations

$$R_1 : G \rightarrow \text{GL}(V) \quad \text{and} \quad R_2 : G \rightarrow \text{GL}(W)$$

afforded by two $\mathbb{C}G$-modules V and W are isomorphic, if and only if their characters $\chi_1 = \text{Tr} \circ R_1$ and $\chi_2 = \text{Tr} \circ R_2$ are equal.

The two characters $\chi_i : G \rightarrow \mathbb{C}$ are class functions.
Research problems in ordinary rep. theory

Already done:

- Character tables of symmetric groups.
Research problems in ordinary rep. theory

Already done:

- Character tables of symmetric groups.
- Character tables of alternating groups.
Research problems in ordinary rep. theory

Already done:

- Character tables of symmetric groups.
- Character tables of alternating groups.
- The ATLAS (character tables of simple groups).
Research problems in ordinary rep. theory

Already done:

- Character tables of symmetric groups.
- Character tables of alternating groups.
- The ATLAS (character tables of simple groups).
- Some generic character tables.
Research problems in ordinary rep. theory

Already done:

- Character tables of symmetric groups.
- Character tables of alternating groups.
- The ATLAS (character tables of simple groups).
- Some generic character tables.

Still to do:

- Determine character tables for more groups.
Research problems in ordinary rep. theory

Already done:

- Character tables of symmetric groups.
- Character tables of alternating groups.
- The ATLAS (character tables of simple groups).
- Some generic character tables.

Still to do:

- Determine character tables for more groups.
- Determine more generic tables for whole families of groups.
Research problems in ordinary rep. theory

Already done:

- Character tables of symmetric groups.
- Character tables of alternating groups.
- The ATLAS (character tables of simple groups).
- Some generic character tables.

Still to do:

- Determine character tables for more groups.
- Determine more generic tables for whole families of groups.
- Devise better algorithms to compute tables.
Actions and Reps
Max Neunhöffer

Modular representation theory of groups

F: field with char(F) | |G|, then FG is not semisimple.
Modular representation theory of groups

\(\mathbb{F} \): field with \(\text{char}(\mathbb{F}) \mid |G| \), then \(\mathbb{F}G \) is not semisimple.

The modular rep. theory of groups strives to solve:

Problem (Classification of simple modules)

Classify the *isomorphism types* of simple \(\mathbb{F}G \)-modules,
Modular representation theory of groups

\(\mathbb{F} \): field with \(\text{char}(\mathbb{F}) \mid |G| \), then \(\mathbb{F}G \) is not semisimple.

The modular rep. theory of groups strives to solve:

Problem (Classification of simple modules)

Classify the isomorphism types of simple \(\mathbb{F}G \)-modules, i.e. classify irreducible \(\mathbb{F}G \)-modules up to isomorphism.
Modular representation theory of groups

F: field with $\text{char}(F) | |G|$, then $F[G]$ is not semisimple.

The modular rep. theory of groups strives to solve:

Problem (Classification of simple modules)

Classify the isomorphism types of simple $F[G]$-modules, i.e. classify irreducible $F[G]$-modules up to isomorphism.

Problem (Classification of indecomposable modules)

Classify the isomorphism types of indecomposable $F[G]$-modules.
Modular representation theory of groups

\(F \): field with \(\text{char}(F) \mid |G| \), then \(FG \) is not semisimple.

The modular rep. theory of groups strives to solve:

Problem (Classification of simple modules)

Classify the isomorphism types of simple \(FG \)-modules, i.e. classify irreducible \(FG \)-modules up to isomorphism.

Problem (Classification of indecomposable modules)

Classify the isomorphism types of indecomposable \(FG \)-modules.

Lemma (Brauer characters)

Two irreducible representations \(R_1 : G \to \text{GL}(V) \) and \(R_2 : G \to \text{GL}(W) \) afforded by two \(FG \)-modules \(V \) and \(W \) are isomorphic, if and only if their Brauer characters \(\psi_1 \) and \(\psi_2 \) are equal.
Modular representation theory of groups

\(\mathbb{F} \): field with \(\text{char}(\mathbb{F}) \mid |G| \), then \(\mathbb{F}G \) is not semisimple.

The modular rep. theory of groups strives to solve:

Problem (Classification of simple modules)

Classify the isomorphism types of simple \(\mathbb{F}G \)-modules, i.e. classify irreducible \(\mathbb{F}G \)-modules up to isomorphism.

Problem (Classification of indecomposable modules)

Classify the isomorphism types of indecomposable \(\mathbb{F}G \)-modules.

Lemma (Brauer characters)

Two irreducible representations \(R_1 : G \to \text{GL}(V) \) and \(R_2 : G \to \text{GL}(W) \) afforded by two \(\mathbb{F}G \)-modules \(V \) and \(W \) are isomorphic, if and only if their Brauer characters \(\psi_1 \) and \(\psi_2 \) are equal.

The two Brauer characters \(\psi_i \) take values in \(\mathbb{C} \)!
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups $(n \leq 18)$.
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups \((n \leq 18)\).
- Brauer tables of some small alternating groups.
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups \((n \leq 18)\).
- Brauer tables of some small alternating groups.
- Modular ATLAS (Brauer tables of simple groups).
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups \((n \leq 18)\).
- Brauer tables of some small alternating groups.
- Modular ATLAS (Brauer tables of simple groups). 1992 by Hiß, Jansen, Lux and Parker: groups up to page 100 in the ATLAS, now some more.
Research problems in modular rep. theory

Already done:

- Brauer tables of **some small symmetric groups** \((n \leq 18)\).
- Brauer tables of **some small alternating groups**.
- **Modular ATLAS** (Brauer tables of simple groups). 1992 by Hiß, Jansen, Lux and Parker: groups up to page 100 in the ATLAS, now some more.

Still to do:

- Determine Brauer tables for **more groups**.
Research problems in modular rep. theory

Already done:

- Brauer tables of **some small** symmetric groups $(n \leq 18)$.
- Brauer tables of **some small** alternating groups.
- **Modular ATLAS** (Brauer tables of simple groups). 1992 by Hiß, Jansen, Lux and Parker: groups up to page 100 in the ATLAS, now some more.

Still to do:

- Determine Brauer tables for **more groups**.
- Complete the **Modular ATLAS**.
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups \((n \leq 18)\).
- Brauer tables of some small alternating groups.
- Modular ATLAS (Brauer tables of simple groups). 1992 by Hiß, Jansen, Lux and Parker: groups up to page 100 in the ATLAS, now some more.

Still to do:

- Determine Brauer tables for more groups.
- Complete the Modular ATLAS.
- Classify simple modules of \(\mathbb{F}S_n\).
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups $(n \leq 18)$.
- Brauer tables of some small alternating groups.
- Modular ATLAS (Brauer tables of simple groups). 1992 by Hiß, Jansen, Lux and Parker: groups up to page 100 in the ATLAS, now some more.

Still to do:

- Determine Brauer tables for more groups.
- Complete the Modular ATLAS.
- Classify simple modules of $\mathbb{F}S_n$.
- Compute the 2-modular Brauer table of the Monster.
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups $(n \leq 18)$.
- Brauer tables of some small alternating groups.
- Modular ATLAS (Brauer tables of simple groups). 1992 by Hiß, Jansen, Lux and Parker: groups up to page 100 in the ATLAS, now some more.

Still to do:

- Determine Brauer tables for more groups.
- Complete the Modular ATLAS.
- Classify simple modules of $\mathbb{F}S_n$.
- Compute the 2-modular Brauer table of the Monster.
- Find an algorithm to compute a Brauer table???
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups ($n \leq 18$).
- Brauer tables of some small alternating groups.
- Modular ATLAS (Brauer tables of simple groups). 1992 by Hiß, Jansen, Lux and Parker: groups up to page 100 in the ATLAS, now some more.

Still to do:

- Determine Brauer tables for more groups.
- Complete the Modular ATLAS.
- Classify simple modules of $\mathbb{F}S_n$.
- Compute the 2-modular Brauer table of the Monster.
- Find an algorithm to compute a Brauer table???
- Classify indecomposable $\mathbb{F}G$-modules???
Problem (Permutation group algorithms)

Given $G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n$ on a computer. Find efficient algorithms to compute with and in G:

Test membership of $\pi \in S_n$ in G.
Find the group order $|G|$.
Decide whether $G = A_n$ or $G = S_n$ or none.
Find orbits and blocks of primitivity.
Find a presentation.
Find the centre of G.

All of this is done and works well in nearly linear time: runtime is bounded by $C \cdot n \cdot k \cdot \log D(|G|)$.

Permutation groups
Permutation groups

Problem (Permutation group algorithms)

Given \(G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n \) on a computer. Find efficient algorithms to compute with and in \(G \):

- Test membership of \(\pi \in S_n \) in \(G \).
Permutation groups

Problem (Permutation group algorithms)

Given \(G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n \) on a computer.
Find efficient algorithms to compute with and in \(G \):

- Test membership of \(\pi \in S_n \) in \(G \).
- Find the group order \(|G|\).
Permutation groups

Problem (Permutation group algorithms)

Given $G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n$ on a computer. Find efficient algorithms to compute with and in G:

- Test membership of $\pi \in S_n$ in G.
- Find the group order $|G|$.
- Decide whether $G = A_n$ or $G = S_n$ or none.
Permutation groups

Problem (Permutation group algorithms)

Given \(G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n \) on a computer. Find efficient algorithms to compute with and in \(G \):

- **Test membership of** \(\pi \in S_n \) **in** \(G \).
- **Find the group order** \(|G| \).
- **Decide whether** \(G = A_n \) **or** \(G = S_n \) **or none.**
- **Find orbits and blocks of primitivity.**
Permutation groups

Problem (Permutation group algorithms)

Given $G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n$ on a computer. Find efficient algorithms to compute with and in G:

- Test membership of $\pi \in S_n$ in G.
- Find the group order $|G|$.
- Decide whether $G = A_n$ or $G = S_n$ or none.
- Find orbits and blocks of primitivity.
- Find a presentation.
Permutation groups

Problem (Permutation group algorithms)

Given \(G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n \) on a computer.
Find efficient algorithms to compute with and in \(G \):

- Test membership of \(\pi \in S_n \) in \(G \).
- Find the group order \(|G| \).
- Decide whether \(G = A_n \) or \(G = S_n \) or none.
- Find orbits and blocks of primitivity.
- Find a presentation.
- Find the centre of \(G \).

...All of this is done and works well in nearly linear time: runtime is bounded by \(C \cdot n \cdot k \cdot \log D(|G|) \).
Problem (Permutation group algorithms)

Given $G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n$ on a computer. Find efficient algorithms to compute with and in G:

- Test membership of $\pi \in S_n$ in G.
- Find the group order $|G|$.
- Decide whether $G = A_n$ or $G = S_n$ or none.
- Find orbits and blocks of primitivity.
- Find a presentation.
- Find the centre of G.
- \ldots
Permutation groups

Problem (Permutation group algorithms)

Given $G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n$ on a computer. Find efficient algorithms to compute with and in G:

- Test membership of $\pi \in S_n$ in G.
- Find the group order $|G|$.
- Decide whether $G = A_n$ or $G = S_n$ or none.
- Find orbits and blocks of primitivity.
- Find a presentation.
- Find the centre of G.
- ...

All of this is done and works well in nearly linear time:

runtime is bounded by $C \cdot n \cdot k \cdot \log^D(|G|)$.

Actions and Reps
- Max Neunhöffer

Group algebras
- Algebras
- Modules

Faithfulness

Homomorphisms

Subacts

Factor acts

Extensions and direct sums

Indecomposability

Problems
- Ordinary rep. theory
- Modular rep. theory
- Permutation groups
- Matrix and projective groups
- Orbits
Open questions for permutation groups

Still to do (in nearly linear time):

- Compute the centraliser $C_G(H)$ for some $H < S_n$.
Open questions for permutation groups

Still to do (in nearly linear time):

- Compute the centraliser $C_G(H)$ for some $H < S_n$.
- Compute the derived subgroup G'.
Open questions for permutation groups

Still to do (in nearly linear time):

- Compute the centraliser $C_G(H)$ for some $H < S_n$.
- Compute the derived subgroup G'.
- Compute intersections of $G, H < S_n$.
Open questions for permutation groups

Still to do (in nearly linear time):

- Compute the centraliser $C_G(H)$ for some $H < S_n$.
- Compute the derived subgroup G'.
- Compute intersections of $G, H < S_n$.
- Compute conjugacy classes of permutation groups.
Open questions for permutation groups

Still to do (in nearly linear time):

- Compute the centraliser $C_G(H)$ for some $H < S_n$.
- Compute the derived subgroup G'.
- Compute intersections of $G, H < S_n$.
- Compute conjugacy classes of permutation groups.
- Test $G, H < S_n$ for conjugacy.
Matrix and projective groups

Problem (Matrix group algorithms)

Given \(G := \langle M_1, \ldots, M_k \in \text{GL}(\mathbb{F}_q^n) \rangle \leq \text{GL}(\mathbb{F}_q^n) \) *on a computer*.

Ultimate goal: Answer similar questions as for permutation groups.
Matrix and projective groups

Problem (Matrix group algorithms)

Given $G := \langle M_1, \ldots, M_k \in \text{GL}(\mathbb{F}_q^n) \rangle \leq \text{GL}(\mathbb{F}_q^n)$ on a computer.

Ultimate goal: Answer similar questions as for permutation groups.

This is largely unsolved!
Matrix and projective groups

Problem (Matrix group algorithms)

Given $G := \langle M_1, \ldots, M_k \in \text{GL}(F_q^n) \rangle \leq \text{GL}(F_q^n)$ on a computer.

Ultimate goal: Answer similar questions as for permutation groups.

This is largely unsolved!

Problem (Projective group algorithms)

Given $G := \langle \bar{M}_1, \ldots, \bar{M}_k \in \text{PGL}(n, q) \rangle \leq \text{PGL}(n, q)$ on a computer.

Ultimate goal: Answer similar questions as for permutation groups.
Constructive recognition

Problem (Constructive recognition)

Let \mathbb{F}_q be the field with q elements and

$$M_1, \ldots, M_k \in \text{GL}(\mathbb{F}_q^n).$$

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \text{GL}(\mathbb{F}_q^n)$,
 - decides, whether or not $M \in G$, and,
 - if so, expresses M as word in the M_i.

The runtime should be bounded from above by a polynomial in n, k, and $\log q$. A Monte Carlo algorithm is enough. (Verification!)
Constructive recognition

Problem (Constructive recognition)

Let \mathbb{F}_q be the field with q elements and

$$M_1, \ldots, M_k \in \text{GL}(\mathbb{F}_q^n).$$

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \text{GL}(\mathbb{F}_q^n)$,
 - decides, whether or not $M \in G$, and,
 - if so, expresses M as word in the M_i.

- The runtime should be bounded from above by a polynomial in n, k and $\log q$.
Constructive recognition

Problem (Constructive recognition)

Let \mathbb{F}_q be the field with q elements and $M_1, \ldots, M_k \in \text{GL}(\mathbb{F}_q^n)$.

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \text{GL}(\mathbb{F}_q^n)$,
 - decides, whether or not $M \in G$, and,
 - if so, expresses M as word in the M_i.

The runtime should be bounded from above by a polynomial in n, k and $\log q$.

A Monte Carlo Algorithmus is enough.
Constructive recognition

Problem (Constructive recognition)

Let \mathbb{F}_q be the field with q elements and\n
\[M_1, \ldots, M_k \in \text{GL}(\mathbb{F}_q^n). \]

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \text{GL}(\mathbb{F}_q^n)$,\n - decides, whether or not $M \in G$, and,\n - if so, expresses M as word in the M_i.

The runtime should be bounded from above by a polynomial in n, k and $\log q$.

A Monte Carlo Algorithmus is enough. (Verification!)
Recursion: composition trees

We get a tree:

```
    G
   /|
  /  \
N-----H
```

Up arrows: inclusions
Down arrows: homomorphisms
Recursion: composition trees

We get a tree:

\[\begin{array}{c}
 \text{G} \\
 \downarrow \quad \downarrow \\
 \text{N} \\
 \downarrow \quad \downarrow \\
 \text{N}_1 \quad \text{H}_1 \\
 \downarrow \quad \downarrow \\
 \text{N}_3 \quad \text{H}_3 \\
 \downarrow \quad \downarrow \\
 \text{N}_2 \quad \text{H}_2 \\
 \downarrow \quad \downarrow \\
 \emptyset \quad \emptyset \\
 \downarrow \quad \downarrow \\
 \emptyset \\
 \end{array} \]

Up arrows: inclusions
Down arrows: homomorphisms
Recursion: composition trees

We get a tree:

Up arrows: inclusions
Down arrows: homomorphisms

Old idea, improvements are still being made
Enumerating large orbits

Orbit enumerations play an important role in
Enumerating large orbits

Orbit enumerations play an important role in

- modular representation theory,
Enumerating large orbits

Orbit enumerations play an important role in
- modular representation theory,
- permutation group algorithms,
Enumerating large orbits

Orbit enumerations play an important role in

- modular representation theory,
- permutation group algorithms,
- matrix and projective group algorithms,
Enumerating large orbits

Orbit enumerations play an important role in

- modular representation theory,
- permutation group algorithms,
- matrix and projective group algorithms,
- combinatorics,
Enumerating large orbits

Orbit enumerations play an important role in

- modular representation theory,
- permutation group algorithms,
- matrix and projective group algorithms,
- combinatorics,
- finite geometry.
Enumerating large orbits

Orbit enumerations play an important role in
- modular representation theory,
- permutation group algorithms,
- matrix and projective group algorithms,
- combinatorics,
- finite geometry.

To get a feeling:
- To enumerate an orbit of 1140000 vectors in \mathbb{F}_2^{760} needs around 90 seconds.
Enumerating large orbits

** Orbit enumerations play an important role in **
- modular representation theory,
- permutation group algorithms,
- matrix and projective group algorithms,
- combinatorics,
- finite geometry.

To get a feeling:
- To enumerate an orbit of 1140000 vectors in \mathbb{F}_2^{760} needs around 90 seconds.
- To enumerate 95% of the same orbit with better tricks takes 1.1 seconds.
Enumerating large orbits

Orbit enumerations play an important role in

- modular representation theory,
- permutation group algorithms,
- matrix and projective group algorithms,
- combinatorics,
- finite geometry.

To get a feeling:

- To enumerate an orbit of 1140000 vectors in \mathbb{F}_2^{760} needs around 90 seconds.
- To enumerate 95% of the same orbit with better tricks takes 1.1 seconds.

Finding better ways to enumerate orbits is a current research topic.