Actions, representations and various algebraic structures

Max Neunhöffer

University of St Andrews

12 November 2008
Actions and representations

An action of G on X is a map

$$A : X \times G \rightarrow X, \quad (x, g) \mapsto x \cdot g$$

A representation of G on X is a map

$$R : G \rightarrow X^X = \{f : X \rightarrow X\}$$

The two concepts are the same:

given A, set

$$R(g) := (x \mapsto A(x, g)) = (x \mapsto x \cdot g)$$

given R, set

$$A(x, g) := R(g)(x)$$
Group algebras — definition

Let \mathbb{F} be a field and G a finite group.

$\mathbb{F}G := \text{vector space with basis } G$, multiplication inherited from G and distributive law:

$$
\left(\sum_{g \in G} \lambda_g \cdot g\right) \cdot \left(\sum_{\tilde{g} \in G} \mu_{\tilde{g}} \cdot \tilde{g}\right) = \sum_{g,\tilde{g} \in G} \lambda_g \cdot \mu_{\tilde{g}} \cdot (g\tilde{g})
$$

for $\lambda_g, \mu_{\tilde{g}} \in \mathbb{F}$.

$\mathbb{F}G := \{f : G \to \mathbb{F}\}$ with pointwise addition and convolution product:

$$(f \cdot h)(g) := \sum_{\tilde{g} \in G} f(g \cdot \tilde{g}^{-1}) \cdot h(\tilde{g})$$

for $f, h : G \to \mathbb{F}$.

$\mathbb{F}G := \text{associative } \mathbb{F}\text{-algebra with generators } G \text{ and relations } g \cdot \tilde{g} - (g\tilde{g}) = 0 \text{ for } g, \tilde{g} \in G.$
Group algebras — properties

\(\mathbb{F}: \) field, \(G: \) group, \(\mathbb{F}G: \) group algebra, \(V: \mathbb{F}\)-vector space.

There is a bijection between

\[
\{ \varphi : G \rightarrow \text{GL}(V) \mid \varphi \text{ is a group homomorphism} \}
\]

and

\[
\{ \psi : \mathbb{F}G \rightarrow \text{End}_\mathbb{F}(V) \mid \psi \text{ is an algebra homomorphism} \}
\]

Given \(\varphi : G \rightarrow \text{GL}(V) \), define

\[
\psi \left(\sum_{g \in G} \lambda_g \cdot g \right) := \sum_{g \in G} \lambda_g \cdot \varphi(g)
\]

(use finite presentation).

Given \(\psi : \mathbb{F}G \rightarrow \text{End}_\mathbb{F}(V) \), simply restrict \(\varphi := \psi|_G \), since

\[
1_V = \psi(1_G) = \psi(g \cdot g^{-1}) = \psi(g) \cdot \psi(g^{-1}) \quad \text{for all } g \in G.
\]
 Modules

Definition (G-module or \(\mathbb{F}G \)-module)

An \(\mathbb{F} \)-vector space \(V \) together with
- a group homomorphism \(\varphi : G \to \text{GL}(V) \),
- or an algebra homomorphism \(\psi : \mathbb{F}G \to \text{End}_\mathbb{F}(V) \)

is called a **\(G \)-module over \(\mathbb{F} \)** or a **\(\mathbb{F}G \)-module**.

This is nothing but

an \(\mathbb{F} \)-vector space with an \(\mathbb{F} \)-linear action for \(G \).

This is nothing but

an \(\mathbb{F} \)-linear representation for \(G \).
Kernels and faithfulness

Let $A : X \times G \rightarrow X$ be an action, or equivalently, let $R : G \rightarrow X^X$ be a representation.

Depending on the types of G and X, it might make sense to speak of the kernel of the representation R or not.

Definition (Faithful representation/action)

We call the representation R (or the action A) **faithful**, if its kernel $\ker R$ is trivial.

Note: If a G-module V over \mathbb{F} is faithful, it does not necessarily follow that the corresponding $\mathbb{F}G$-module V is faithful!
Homomorphisms and isomorphisms

Let $A : X \times G \to X$ and $\tilde{A} : \tilde{X} \times G \to \tilde{X}$ be two actions.

Definition (G-homomorphism)

A homomorphism $\varphi : X \to \tilde{X}$ is called a G-homomorphism or G-equivariant, if

$$\varphi(x \cdot g) = \varphi(x) \cdot g \quad \text{for all } x \in X \text{ and all } g \in G.$$

Equivalently, this means

$$\varphi(A(x, g)) = \tilde{A}(\varphi(x), g) \quad \text{for all } x \in X \text{ and all } g \in G.$$

Equivalently, this means that this diagram commutes:

$$
\begin{array}{ccc}
X \times G & \xrightarrow{A} & X \\
\downarrow{\varphi \times \text{id}_G} & & \downarrow{\varphi} \\
\tilde{X} \times G & \xrightarrow{\tilde{A}} & \tilde{X}
\end{array}
$$

If φ has a G-equiv. inverse, it is called a G-isomorphism.
Subacts

Let G act on X, i.e. $A : X \times G \to X$.

Definition (G-invariant subset, Subact)

A subset $Y \subseteq X$ is called G-invariant, if

$$y \cdot g \in Y \quad \text{for all } y \in Y \text{ and all } g \in G.$$

The restriction $A|_{Y \times G}$ is then a map to Y and G acts on Y. If $Y \subseteq X$ is also a substructure of X, we call Y a subact (or submodule resp.).

Recall: A permutation representation was called transitive if it has no proper subacts.

Definition (Irreducible/simple module)

An F^G-module M is called irreducible or simple, if it has no submodules except 0 and M itself.
Factor acts

Let G act on X, i.e. $A : X \times G \rightarrow X$.

Definition (G-invariant partition, factor act)

Let $X = \bigcup_{i \in I} Y_i$ be partitioned such that

$$\forall \ i \in I \ \text{and} \ g \in G, \ \text{we have} \ Y_i \cdot g \subseteq Y_j \ \text{for some} \ j \in I.$$

We say that the partition is G-invariant and get an action on the set of parts $Y := \{ Y_i | i \in I \}$:

$$Y_i \ast g := Y_j \ \text{if} \ Y_i \cdot g \subseteq Y_j.$$

Recall: We call a permutation action primitive, if it has no non-trivial factor acts.

Note: We usually want extra conditions to ensure that Y has the same algebraic structure as X and the new action is a homomorphism of such structures for all g.
Extensions and direct sums

This is only about modules!

Let

\[0 \rightarrow W \xrightarrow{i} V \xrightarrow{\pi} U \cong V/W \rightarrow 0 \]

be a module \(V \) with a non-trivial submodule.

This sequence may or may not be split:

\[0 \rightarrow W \xrightarrow{i} V \xrightarrow{\pi} U \xleftarrow{r} \rightarrow 0 , \]

i.e. there is \(r : U \rightarrow W \) with \(\pi \circ r = \text{id}_U \).

If and only if it is split, the module \(V \) is isomorphic to the direct sum

\[V \cong W \oplus U. \]
Indecomposability and semisimplicity

Definition (Indecomposable module)

An FG-module V is called **indecomposable** if it is not isomorphic to a direct sum of two proper submodules. Otherwise it is called **decomposable**.

Lemma (Decomposable implies reducible)

A **decomposable module** is reducible.

Definition (Semisimple modules and algebras)

A module is called **semisimple**, if it is isomorphic to a direct sum of simple modules.

An F-algebra A is called **semisimple**, if every A-module is semisimple.
Ordinary representation theory of groups

For a finite group, the group algebra \(\mathbb{C}G \) is semisimple.

The ordinary representation theory of groups solves:

Problem (Classification of simple modules)

Classify the isomorphism types of simple \(\mathbb{C}G \)-modules, i.e. classify irreducible \(\mathbb{C}G \)-modules up to isomorphism.

Lemma (Characters)

Two representations \(R_1 : G \to \text{GL}(V) \) and \(R_2 : G \to \text{GL}(W) \)

afforded by two \(\mathbb{C}G \)-modules \(V \) and \(W \) are isomorphic, if and only if their characters \(\chi_1 = \text{Tr} \circ R_1 \) and \(\chi_2 = \text{Tr} \circ R_2 \)

are equal.

The two characters \(\chi_i : G \to \mathbb{C} \) *are class functions.*
Research problems in ordinary rep. theory

Already done:
- Character tables of symmetric groups.
- Character tables of alternating groups.
- The ATLAS (character tables of simple groups).
- Some generic character tables.

Still to do:
- Determine character tables for more groups.
- Determine more generic tables for whole families of groups.
- Devise better algorithms to compute tables.
Modular representation theory of groups

\(\mathbb{F} \): field with \(\text{char}(\mathbb{F}) \mid |G| \), then \(\mathbb{F}G \) is not semisimple.

The modular rep. theory of groups strives to solve:

Problem (Classification of simple modules)

Classify the isomorphism types of simple \(\mathbb{F}G \)-modules, i.e. classify irreducible \(\mathbb{F}G \)-modules up to isomorphism.

Problem (Classification of indecomposable modules)

Classify the isomorphism types of indecomposable \(\mathbb{F}G \)-modules.

Lemma (Brauer characters)

Two irreducible representations \(R_1 : G \rightarrow \text{GL}(V) \) and \(R_2 : G \rightarrow \text{GL}(W) \) afforded by two \(\mathbb{F}G \)-modules \(V \) and \(W \) are isomorphic, if and only if their Brauer characters \(\psi_1 \) and \(\psi_2 \) are equal.

The two Brauer characters \(\psi_i \) take values in \(\mathbb{C} \)!
Research problems in modular rep. theory

Already done:

- Brauer tables of some small symmetric groups \((n \leq 18)\).
- Brauer tables of some small alternating groups.
- Modular ATLAS (Brauer tables of simple groups). 1992 by Hiß, Jansen, Lux and Parker: groups up to page 100 in the ATLAS, now some more.

Still to do:

- Determine Brauer tables for more groups.
- Complete the Modular ATLAS.
- Classify simple modules of \(\mathbb{F}S_n\).
- Compute the 2-modular Brauer table of the Monster.
- Find an algorithm to compute a Brauer table???
- Classify indecomposable \(\mathbb{F}G\)-modules???
Problem (Permutation group algorithms)

Given $G := \langle g_1, \ldots, g_k \in S_n \rangle \leq S_n$ on a computer.
Find efficient algorithms to compute with and in G:

- Test membership of $\pi \in S_n$ in G.
- Find the group order $|G|$.
- Decide whether $G = A_n$ or $G = S_n$ or none.
- Find orbits and blocks of primitivity.
- Find a presentation.
- Find the centre of G.
- ...

All of this is done and works well in nearly linear time:

runtime is bounded by $C \cdot n \cdot k \cdot \log^D(|G|)$.
Open questions for permutation groups

Still to do (in nearly linear time):

- Compute the centraliser $C_G(H)$ for some $H < S_n$.
- Compute the derived subgroup G'.
- Compute intersections of $G, H < S_n$.
- Compute conjugacy classes of permutation groups.
- Test $G, H < S_n$ for conjugacy.
Matrix and projective groups

Problem (Matrix group algorithms)

\[G := \langle M_1, \ldots, M_k \in \text{GL}(F_q^n) \rangle \leq \text{GL}(F_q^n) \text{ on a computer.} \]

Ultimate goal: Answer similar questions as for permutation groups.

This is largely unsolved!

Problem (Projective group algorithms)

\[G := \langle \bar{M}_1, \ldots, \bar{M}_k \in \text{PGL}(n, q) \rangle \leq \text{PGL}(n, q) \text{ on a computer.} \]

Ultimate goal: Answer similar questions as for permutation groups.
Constructive recognition

Problem (Constructive recognition)

Let \mathbb{F}_q be the field with q elements and $M_1, \ldots, M_k \in \text{GL}(\mathbb{F}_q^n)$.

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \text{GL}(\mathbb{F}_q^n)$,
 - decides, whether or not $M \in G$, and,
 - if so, expresses M as word in the M_i.

The runtime should be bounded from above by a polynomial in n, k and $\log q$.

A Monte Carlo Algorithmus is enough. (Verification!)
Recursion: composition trees

We get a tree:

\[G \longrightarrow N \]
\[N \longrightarrow H \]

Up arrows: inclusions

Down arrows: homomorphisms

Old idea, improvements are still being made
Enumerating large orbits

Orbit enumerations play an important role in

- modular representation theory,
- permutation group algorithms,
- matrix and projective group algorithms,
- combinatorics,
- finite geometry.

To get a feeling:

- To enumerate an orbit of 1140000 vectors in \mathbb{F}_2^{760} needs around 90 seconds.
- To enumerate 95% of the same orbit with better tricks takes 1.1 seconds.

Finding better ways to enumerate orbits is a current research topic.