1. Show that $\gamma_2(G) = G'$. Deduce that abelian groups are nilpotent.

Solution: By definition $\gamma_2(G) = [G, G]$. Thus $\gamma_2(G) = \langle [x, y] \mid x, y \in G \rangle = G'$. If G is abelian, then $[x, y] = 1$ for all $x, y \in G$, so $\gamma_2(G) = G' = 1$. Hence G is nilpotent (of class ≤ 1).

2. Show that $Z(S_3) = 1$. Hence calculate the upper central series of S_3 and deduce that S_3 is not nilpotent.

Show that $\gamma_i(S_3) = A_3$ for all $i \geq 2$. [Hint: We have calculated S_3^i previously and now know that S_3 is not nilpotent.]

Find a normal subgroup N of S_3 such that S_3/N and N are both nilpotent.

Solution: Recall that all permutations with the same cycle structure are conjugate in S_n. Therefore a permutation lies in the centre of S_3 if and only if it is the only permutation of its cycle structure. Hence $Z(S_3) = 1$ (there are three permutations of cycle structure $(\alpha \beta)$ and two of cycle structure $(\alpha \beta \gamma)$).

This shows that $Z_i(S_3) = 1$. Suppose that $Z_i(S_3) = 1$. Then $Z_{i+1}(S_3) = Z_{i+1}(S_3)/Z_i(S_3) = Z(S_3/Z_i(S_3)) = Z(S_3) = 1$. Hence, by induction, $Z_i(S_3) = 1$ for all i. Since $Z_i(S_3) < S_3$ for all i, we deduce that S_3 is not nilpotent.

Now $S_3^i = A_3$, by Question 2(i) on Problem Sheet VI. Hence $\gamma_2(S_3) = S_3^i = A_3$. Now A_3 is of order 3, so has no proper non-trivial subgroups. Hence for $i \geq 2$, either $\gamma_i(S_3) = A_3$ or $\gamma_i(S_3) = 1$. But S_3 is not nilpotent, so $\gamma_i(S_3) \neq 1$ for all i. Hence $\gamma_i(S_3) = A_3$ for all $i \geq 2$.

Let $N = A_3 \leq S_3$. Then $S_3/N \cong C_2$ and $N \cong C_3$, so these are both abelian and hence nilpotent. (Thus we have an example of a non-nilpotent group G with normal subgroup N such that G/N and N are nilpotent.)

3. Show that $Z(G \times H) = Z(G) \times Z(H)$.

Show, by induction on i, that $Z_i(G \times H) = Z_i(G) \times Z_i(H)$ for all i.

Deduce that a direct product of a finite number of nilpotent groups is nilpotent.

Solution: Let $(x, y) \in Z(G \times H)$. Then for $g \in G$ and $h \in H$, it follows that $(x, y)(g, h) = (g, h)(x, y)$. That is, $(xg, yh) = (gx, hy)$. Hence $xg = gx$ for all $g \in G$, and $yh = hy$ for all $h \in H$. Therefore $x \in Z(G)$ and $y \in Z(H)$, so $Z_i(G \times H) \leq Z(G) \times Z(H)$.

Conversely, if $(x, y) \in Z(G) \times Z(H)$; that is, $x \in Z(G)$ and $y \in Z(H)$, then

$$(x, y)(g, h) = (xg, yh) = (gx, hy) = (g, h)(x, y)$$

so $(x, y) \in Z(G \times H)$. This shows that $Z(G) \times Z(H) \leq Z(G \times H)$. The equality now follows.
For the next step, induct on i. If $i = 0$, then $Z_0(G \times H) = \{(1, 1)\} = 1 \times 1 = Z_0(G) \times Z_0(H)$, so the result holds. Suppose as an inductive hypothesis that $Z_i(G \times H) = Z_i(G) \times Z_i(H)$. Then

$$\frac{G \times H}{Z_i(G \times H)} = \frac{G \times H}{Z_i(G) \times Z_i(H)}.$$

The map ϕ that sends $(Z_i(G) \times Z_i(H))(x, y)$ to $(Z_i(G)x, Z_i(H)y)$ is an isomorphism:

$$\phi: \frac{G \times H}{Z_i(G) \times Z_i(H)} \to \frac{G}{Z_i(G)} \times \frac{H}{Z_i(H)}.$$

(This works whenever $M \trianglelefteq G$ and $N \trianglelefteq G$, for then $(G \times H)/(M \times N) \cong G/M \times H/N$ via a similar isomorphism.) This isomorphism ϕ maps the centre of the group on the left-hand side to the centre of the group on the right-hand side. Hence

$$\left(\frac{Z_{i+1}(G \times H)}{Z_i(G \times H)}\right) \phi = \left(\frac{Z_i \left(\frac{G \times H}{Z_i(G \times H)}\right)}{Z_i(G \times H)}\right) \phi$$

$$= \left(\frac{Z_i \left(\frac{G \times H}{Z_i(G) \times Z_i(H)}\right)}{Z_i(G) \times Z_i(H)}\right) \phi$$

$$= Z_i(\frac{G/Z_i(G) \times H/Z_i(H)})$$

$$= Z_i(\frac{G/Z_i(G)}{Z_i(H)}) \times Z_i(H/Z_i(G)) \quad \text{from the first part}$$

$$= Z_{i+1}(G)/Z_i(G) \times Z_{i+1}(H)/Z_i(H) \quad \text{by definition}$$

$$= \left(\frac{Z_{i+1}(G) \times Z_{i+1}(H)}{Z_i(G) \times Z_i(H)}\right) \phi$$

with the last step being the definition of ϕ. Since ϕ is a bijection,

$$\frac{Z_{i+1}(G \times H)}{Z_i(G \times H)} = \frac{Z_{i+1}(G) \times Z_{i+1}(H)}{Z_i(G \times H)}$$

and the Correspondence Theorem yields $Z_{i+1}(G \times H) = Z_{i+1}(G) \times Z_{i+1}(H)$, which completes the induction.

Let G_1, G_2, \ldots, G_n be nilpotent groups. Then there exist c_i such that $Z_{c_i}(G_i) = G_i$. Choose c to be the largest of all the c_i. Then $Z_c(G_i) = G_i$ for $i = 1, 2, \ldots, n$. By the previous result, we see that

$$Z_c(G_1 \times G_2 \times \cdots \times G_n) = Z_c(G_1) \times Z_c(G_2) \times \cdots \times Z_c(G_n)$$

$$= G_1 \times G_2 \times \cdots \times G_n,$$

and hence $G_1 \times G_2 \times \cdots \times G_n$ is nilpotent.

4. Let G be a finite elementary abelian p-group. Show that $\Phi(G) = 1$.

Solution: Let $G = C_p \times C_p \times \cdots \times C_p$ (d times, for some d). Then

$$M = M_i = C_p \times \cdots \times C_p \times 1 \times C_p \times \cdots \times C_p$$

(where the 1 occurs in the ith entry) is a subgroup of G of index p. If H is a subgroup of G such that $M \trianglelefteq H \trianglelefteq G$, then $|G : H| = [H : M] = |G : M| = p$, so as p is prime, either $H = G$ or $H = M$. Hence M is a maximal subgroup of G. Clearly

$$\bigcap_{i=1}^d M_i = 1$$
and this is the intersection of just some of the maximal subgroups of G. Hence

$$\Phi(G) = \bigcap_{M \text{ maximal in } G} M \leq \bigcap_{i=1}^d M_i = 1.$$

5. Let G be a finite p-group.
If M is a maximal subgroup of G, show that $|G : M| = p$. [Hint: G is nilpotent, so $M \trianglelefteq G$.]
Deduce that $G^pG' \subseteq \Phi(G)$.
Use the previous question to show that $\Phi(G) = G^pG'$.

Solution: Since G is a finite p-group, it is nilpotent (Example 7.6). Let M be a maximal subgroup of G. Then $M \trianglelefteq G$ (Lemma 7.15), and G/M possesses no non-trivial proper subgroups (by the Correspondence Theorem). Therefore G/M is cyclic of prime order, so $|G : M| = p$.
If $x \in G$, then $(Mx)^p = M1$, so $x^p \in M$. Hence

$$x^p \in \bigcap_{M \text{ maximal in } G} M = \Phi(G) \quad \text{for all } x \in G.$$

We deduce that $G^p = \langle x^p \mid x \in G \rangle \subseteq \Phi(G)$. We have already observed that $G' \trianglelefteq \Phi(G)$ (see Theorem 7.18), so $G^pG' \subseteq \Phi(G)$.

Let $N = G^pG'$. This is a product of two normal subgroups of G, so $N \trianglelefteq G$. Now G/N is abelian (since $G' \trianglelefteq N$) and if $x \in G$, then

$$(Nx)^p = Nx^p = N1$$

(since $x^p \in G^p \subseteq N$). Hence G/N is an elementary abelian p-group. It is therefore a direct product of a number of copies of C_p. The previous question now gives $\Phi(G/N) = 1$. Hence there is a collection M_1, M_2, \ldots, M_k of subgroups of G containing N such that M_i/N is a maximal subgroup of G/N and $\bigcap_{i=1}^k (M_i/N) = 1$. By the Correspondence Theorem, M_i is a maximal subgroup of G and

$$\bigcap_{i=1}^k M_i = N.$$

Hence

$$\Phi(G) = \bigcap_{M \text{ maximal in } G} M \leq \bigcap_{i=1}^k M_i = N = G^pG'.$$

Taken together with the previous inclusion, $\Phi(G) = G^pG'$.
Now as $G/\Phi(G)$ is an elementary abelian p-group, it is a direct product of d copies of the cyclic group C_p (for some d). Choose $x_1, x_2, \ldots, x_d \in G$ such that

$$\Phi(G)x_1, \Phi(G)x_2, \ldots, \Phi(G)x_d$$

are the generators of these d direct factors. If $g \in G$, then

$$\Phi(G)g = \Phi(G)x_1^{e_1}x_2^{e_2} \cdots x_d^{e_d}$$

where e_1, e_2, \ldots, e_d are non-negative integers.
for some \(e_i \in \{0, 1, \ldots, p-1\} \), so \(g = yx_1^{e_1}x_2^{e_2} \ldots x_d^{e_d} \) where \(y \in \Phi(G) \). Hence

\[
G = \langle x_1, x_2, \ldots, x_d, \Phi(G) \rangle.
\]

Suppose that \(x_1, x_2, \ldots, x_d \) do not generate \(G \). Then \(\langle x_1, x_2, \ldots, x_d \rangle \) is a proper subgroup of \(G \), so there exists a maximal subgroup \(M \) such that

\[
\langle x_1, x_2, \ldots, x_d \rangle \leq M < G.
\]

Then \(x_1, x_2, \ldots, x_d \in M \) while, by definition, \(\Phi(G) \leq M \). Hence

\[
G = \langle x_1, x_2, \ldots, x_d, \Phi(G) \rangle \leq M < G,
\]

a contradiction. So \(x_1, x_2, \ldots, x_d \) generate \(G \). This shows that if \(G/\Phi(G) \) is a direct product of \(d \) copies of \(C_p \), then \(G \) can be generated by \(d \) elements.

On the other hand, if \(G \) can be generated by \(d \) elements, then so can every quotient. A direct product of more than \(d \) copies of \(C_p \) cannot be generated by \(d \) elements, so the number of copies of \(C_p \) appearing in the direct product for \(G/\Phi(G) \) is at most \(d \).

Putting the above together we deduce that \(G \) can be generated by precisely \(d \) elements a and no fewer b if and only if \(G/\Phi(G) \) is a direct product of \(d \) copies of the cyclic group \(C_p \) of order \(p \).

6. Let \(G \) be a nilpotent group with lower central series

\[
G = \gamma_1(G) > \gamma_2(G) > \cdots > \gamma_c(G) > \gamma_{c+1}(G) = 1.
\]

Suppose \(N \) is a non-trivial normal subgroup of \(G \). Choose \(i \) to be the largest positive integer such that \(N \cap \gamma_i(G) \neq 1 \). Show that \([N \cap \gamma_i(G), G] = 1 \).

Deduce that \(N \cap Z(G) \neq 1 \).

Solution: \(N \neq 1 \), so \(N \cap \gamma_1(G) = N \cap G = N \neq 1 \). Hence we may choose \(i \) to be the largest positive integer such that \(N \cap \gamma_i(G) \neq 1 \). Then

\[
[N \cap \gamma_i(G), G] = [\gamma_i(G), G] = \gamma_{i+1}(G)
\]

while

\[
[N \cap \gamma_i(G), G] \leq [N, G] \leq N
\]

since \(N \leq G \) (if \(x \in N \) and \(g \in G \), then \([x, g] = x^{-1}xg \in N \)). Hence

\[
[N \cap \gamma_i(G), G] \leq N \cap \gamma_{i+1}(G) = 1
\]

by the hypothesis that \(i \) is largest with the given property.

Hence \(N \cap \gamma_i(G) \leq Z(G) \) since \([x, g] = 1\) for all \(x \in N \cap \gamma_i(G) \) and all \(g \in G \). Therefore

\[
1 \neq N \cap \gamma_i(G) \leq N \cap Z(G)
\]

so \(N \cap Z(G) \neq 1 \).