PARTIAL SOLUTIONS FOR ‘FUNDAMENTALS OF PURE MATHEMATICS’ SEPTEMBER 2007 RESIT EXAMINATION

Alan J. Cain

1. (a) (a) Dense: if \(x, y \in \mathbb{Q}^+ \) with \(x < y \) then \(x < (x + y)/2 < y \) and \((x + y)/2 \in \mathbb{Q}^+ \). (b) Not dense: \(1, 2 \in \mathbb{N} \) but there is no \(x \in \mathbb{N} \) with \(1 < x < 2 \). (c) Dense: similar to (a), observe that \(3 \leq (x + y)/2 \leq 4 \). (d) Not dense \(2, 3 \) lie in the set but there is no member of the set with \(2 < x < 3 \).

(b) It lies in \(B \) since \(a = 5a = a + 4a < a + 4b < \frac{b + 4b}{5} = \frac{5b}{5} = b \).

(c) \(A \) is dense. Pick \(\frac{p}{5^m}, \frac{q}{5^n} \in A \) with \(\frac{p}{5^m} < \frac{q}{5^n} \). Then
\[
\frac{p/5^m + 4q/5^n}{5} = \frac{5^mp + 4 \cdot 5^m q}{5^m+n+1} \in A,
\]
and by the previous part,
\[
\frac{p}{5^m} < \frac{(p/5^m + 4q/5^n)}{5} < \frac{q}{5^n}.
\]

(d) Suppose \(r \in \mathbb{Q}^+, r + \frac{1}{r} \in \mathbb{Z} \). Let \(r = p/q \) with \(p \) and \(q \) coprime (no common factor except 1) and \(k \in \mathbb{Z} \) is such that
\[
k = r + \frac{1}{r} = \frac{p}{q} + \frac{q}{p}.
\]
So \(kpq = p^2 + q^2 \). Therefore \(p^2 = q(kp - q) \) and \(q^2 = p(kq - p) \). Suppose \(t \) is a prime factor of \(q \). Then it is a prime factor of \(p^2 \) and thus (by elementary facts about primes) a factor of \(p \). This contradicts \(p \) and \(q \) being prime. So \(q \) has no prime factors, i.e. \(q = 1 \).

Similar reasoning shows \(p = 1 \). So \(r = p/q = 1 \).

(e) Let \(k \in \mathbb{N} \) and suppose \(r + 1/r = k \). Then \(r^2 - kr + 1 = 0 \). This equation has two solutions \(r_k, r'_k \). List the solutions for all \(k \):
\[
r_1, r'_1, r_2, r'_2, r_3, r'_3, \ldots
\]
Thus the set of all positive reals \(r \) with \(r + 1/r \) being an integer is countable.

2. (a) A nonempty subset \(A \) of \(\mathbb{Q} \) is a Dedekind cut if it (a) is bounded above, (b) has no maximum, and (c) is closed downwards.

1
(b) Many examples, for instance \(G = \{ x \in \mathbb{Q} : x < 0 \} \), \(H = \{ 1 \} \).

(c) The relation \(\leq \) inherits reflexivity, anti-symmetry, and transitivity from the order \(\subseteq \). Let \(A, B \) be cuts. We want to show that either \(A \leq B \) or \(B \leq A \). So assume \(A \nleq B \). Then \(A \nsubseteq B \). So there exists \(a \in A \setminus B \). Let \(b \in B \). Then \(b < a \) (since \(b > a \) would imply \(a \in B \) since \(B \) is closed downwards). So \(b \in A \) since \(A \) is closed downwards. So \(b \in B \implies b \in A \). Hence \(B \subseteq A \), i.e. \(B \leq A \). So \(\leq \) is a total order.

(d) The order is not total. For instance, the sets \(\{ 0 \} \) and \(\{ 1 \} \) are not comparable.

(e) \(\mathfrak{T} \) is bounded above by \(r \). It has no maximum, since its least upper bound \(r \) does not lie in \(\mathfrak{T} \). It is clearly closed downwards. So \(\mathfrak{T} \) is a cut.

(f) Observe:

\[
A = \{ x \in \mathbb{Q} : x^2 < 2 \} \cup \{ x \in \mathbb{Q} : x < 0 \} = \{ x \in \mathbb{Q} : x \geq 0, x^2 < 2 \} \cup \{ x \in \mathbb{Q} : x < 0 \}
\]

Now suppose \(A = \mathfrak{T} \). Then

\[
A^2 = (\mathfrak{T})^2 = \{ x \in \mathbb{Q} : 0 < x < 2 \} \cup \{ x \in \mathbb{Q} : x < 0 \} = \{ x \in \mathbb{Q} : x > r^2 \} = \{ x \in \mathbb{Q} : x < 2 \} = \{ x \in \mathbb{Q} : x < r^2 \}.
\]

So \(r^2 = 2 \), which is a contradiction since \(r \) is rational.

3. (a) Proceed as follows:

\[
0.1353353\ldots = 0 + \frac{1}{10} + \frac{3}{10^2} + \frac{5}{10^3} + \frac{3}{10^4} + \frac{5}{10^5} + \ldots
\]

\[
= \frac{1}{10} + \frac{35}{10^3} + \frac{35}{10^3} + \frac{35}{10^6} + \ldots
\]

\[
= \frac{1}{10} + \frac{35}{10^3} \left[1 + \frac{1}{10^2} + \frac{1}{10^4} + \ldots \right]
\]

\[
= \frac{1}{10} + \frac{35}{10^3} \left[\frac{1}{1 - \frac{1}{10^2}} \right]
\]

\[
= \frac{1}{10} + \frac{35}{10^3} \cdot \frac{100}{99}
\]

\[
= \frac{1}{10} + \frac{35}{990}
\]

\[
= \frac{134}{990}.
\]

(b) \(r \) is rational. The second-last digits of the numbers 10, 11, 12, \ldots form a periodic sequence: ten digits 1, ten digits 2, ten digits 3, \ldots ten digits 9, and repeat. The numbers with periodic decimal expansions are precisely the rational numbers.
(c) \(s \) is not rational. The first digits of the natural numbers do not form a periodic sequence. For any \(k \), the sequence of first digits of the natural numbers starting from \(10^k \) begins with \(10^k \) digits \(1 \). So we can always find a string of 1s longer than any supposed period.

(d) There are many different ways to answer this question. For any \(n \in \mathbb{N} \), \(A \) contains

\[
x_n = 0.1 \ldots 15 \underbrace{1 \ldots 1}_{n} \ldots 15 \underbrace{1 \ldots 1}_{n+1} \ldots 15 \ldots \n+2
\]

The numbers \(x_n \) are all rational (they have periodic decimal expansion) and are all distinct. So \(A \) contains infinitely many rational numbers.

For any \(n \in \mathbb{N} \), \(A \) contains

\[
y_n = 0.1 \ldots 15 \underbrace{1 \ldots 1}_{n} \ldots 15 \underbrace{1 \ldots 1}_{n+1} \ldots 15 \ldots \n+2
\]

The numbers \(y_n \) are all irrational (they do not have periodic decimal expansion) and are all distinct. So \(A \) contains infinitely many irrational numbers.

(e) \(A \) has a minimum, namely \(0.11111 \ldots \), and a maximum, namely \(0.55555 \ldots \).

(f) \(A \) is not dense. For example \(0.15555 \ldots \) and \(0.51111 \ldots \) are both in \(A \), but no real number between these two values lies in \(A \).

(g) \(A \) is uncountable.

4. (a) An infinite set \(X \) is countable if it has the same cardinality as \(\mathbb{N} \): that is, if there is a bijection from \(X \) to \(\mathbb{N} \). An infinite set \(X \) is uncountable if it has greater cardinality that \(\mathbb{N} \): if there is no bijection from \(\mathbb{N} \) to \(X \).

(b) Many examples exist, for instance \(S = \mathbb{N} \), \(T = 2\mathbb{N} = \{2n : n \in \mathbb{N}\} \), \(S \setminus T = \{2n - 1 : n \in \mathbb{N}\} \).

(c) For any set \(X \), \(|X| < |P(X)|\).

(d) Define a map \(f : B \rightarrow P(\mathbb{N}) \) by

\[
x_1, x_2, x_3, \ldots \mapsto \{n \in \mathbb{N} | x_n = 1\}.
\]

The mapping \(f \) is a bijection: its inverse is \(g : P(\mathbb{N}) \rightarrow B \), where

\[
Y \mapsto y_1, y_2, y_3, \ldots \text{ where } \begin{cases} y_i = 1 & \text{if } i \in Y \\ y_i = 0 & \text{if } i \notin Y. \end{cases}
\]

(Alternatively, prove that \(f \) is a bijection by showing it is injective and surjective.) So \(|P(\mathbb{N})| = |B|\).

(e) \(|B| = |P(\mathbb{N})| > |\mathbb{N}| \) by Cantor’s Theorem and the previous part. So \(|B| > |\mathbb{N}| \), i.e. \(B \) is uncountable.