Theorem 17.1

Every non-constant complex polynomial

\[p(x) = a_n x^n + \ldots + a_1 x + a_0 \ (a_i \in \mathbb{C}, \ n \geq 1, \ a_n \neq 0) \]

has a zero in \(\mathbb{C} \), i.e. there exists \(z \in \mathbb{C} \) such that \(p(z) = 0 \).
Facts 17.2

- Every complex polynomial is a continuous function \(C \rightarrow C \).
- The modulus of a complex polynomial \(p(x) \) attains its greatest lower bound, i.e. there exists \(c \in C \) such that
 \[
 |p(c)| = \inf\{|p(z)| : z \in C\}. \text{ [This is not true of all functions: e.g. } \]
 \[
 f(x) = \frac{1}{|x|} \text{ has g.l.b. 0 but doesn’t take the value 0.} \]
Lemma 17.3

Let \(g(x) \) be a complex polynomial with \(g(0) = 0 \), let \(k \in \mathbb{N} \), let \(b \in \mathbb{C} \), \(b \neq 0 \), and let

\[
h(x) = 1 + bx^k + x^k g(x).
\]

Then there exists \(u \in \mathbb{C} \) such that \(|h(u)| < 1 \).
Proof.

By Theorem 16.3 (Existence of Roots) there exists \(d \in \mathbb{C} \) such that

\[d^k = -\frac{1}{b}. \]

Then for all \(t \in \mathbb{R} \) with \(0 < t \leq 1 \) we have

\[
| h(dt) | = | 1 + b d^k t^k + d^k t^k g(dt) | \\
= | 1 - t^k + d^k t^k g(dt) | \\
\leq | 1 - t^k | + | d^k t^k g(dt) | \\
= 1 - t^k + t^k | d^k g(dt) |.
\]

(since \(d^k = -1/b \))

(by Theorem 15.7(i))

(by Theorem 15.7(ii))
Proof (continued).

\[|h(dt)| \leq 1 - t^k + t^k |d^k g(dt)| \]

\(g \) is continuous and \(g(0) = 0 \), so \(g(dt) \) can be made arbitrarily small by choosing small \(t \). i.e. there exists \(0 < \delta < 1 \) such that for all \(t \) satisfying \(0 < t < \delta \) we have

\[|d^k g(dt)| \leq \frac{1}{2}. \]

So for any such \(t \),

\[|h(dt)| \leq 1 - t^k + \frac{1}{2} t^k = 1 - \frac{1}{2} t^k < 1, \]

proving the lemma.
Lemma 17.4

Let $f(x)$ be a non-constant complex polynomial. Then for every $c \in \mathbb{C}$ such that $f(c) \neq 0$ there exists another $c' \in \mathbb{C}$ such that $|f(c')| < |f(c)|$.
Proof.

Define a new polynomial

\[p(x) = \frac{f(c + x)}{f(c)} = b_nx^n + \ldots + b_1x + b_0. \]

Note that \(b_0 = 1 \). Let \(b_k \) be the first non-zero coefficient after \(b_0 \):

\[p(x) = b_nx^n + \ldots + b_kx^k + 1 = 1 + b_kx^k + x^k g(x). \]

Clearly, \(g(x) \) satisfies \(g(0) = 0 \). So, by the previous Lemma, there exists \(u \in \mathbb{C} \) such that \(|p(u)| < 1 \). But then, for \(c' = c + u \), we have

\[|f(c')| = |p(u)f(c)| = |p(u)||f(c)| < |f(c)|, \]

proving the lemma.
The Fundamental Theorem of Algebra

Proof of the Fundamental Theorem of Algebra

Theorem

Every non-constant complex polynomial

\[p(x) = a_n x^n + \ldots + a_1 x + a_0 \quad (a_i \in \mathbb{C}, \ n \geq 1, \ a_n \neq 0) \]

has a zero in \(\mathbb{C} \), i.e. there exists \(z \in \mathbb{C} \) such that \(p(z) = 0 \).

Proof.

There exists \(c \in \mathbb{C} \) such that \(|p(c)| = \inf\{|p(z)| : z \in \mathbb{C}\} \).

Suppose that \(p(c) \neq 0 \).

Then there exists \(c' \in \mathbb{C} \) such that \(|p(c')| < |p(c)| \), a contradiction.